Skip Nav Destination
Close Modal
Search Results for
service life
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 428
Search Results for service life
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... Hours: 1148 Intended Service Life: Unlimited Visual Inspection/Light Optical Microscopy Figure 2 shows the fracture surface of the sectioned component in the as-received condition. This figure represents a close-up of the fracture surface using oblique lighting, showing the fracture...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Image
Published: 01 January 2002
Fig. 5 Application-life diagram comparing the severity of a service condition with the service lives of products having a variable characteristic. This diagram is utilized in specific examples in text.
More
Image
Published: 15 January 2021
Fig. 4 Application-life diagram comparing the severity of a service condition with the service lives of products having a variable characteristic. This diagram is used in specific examples in the text.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001652
EISBN: 978-1-62708-220-4
... attack. The 13-year service life of the elbow made it difficult, if not impossible, to determine the order of the corrosion mechanisms or the length of time it took to reach the present state of degradation after the initiation of corrosion. Based on the long service life the present material has given...
Abstract
Three separate corrosion mechanisms were involved in the failure of an AISI type 304 stainless steel pipe elbow. The major cracks, including the one that penetrated the wall, tend to be wide-mouthed, tapering to a blunt tip, with corrosion products filling much of the crack space. This was characteristic of corrosion fatigue. The second type of cracking originated at some of the major cracks. These cracks were branched and transgranular, which is characteristic of stress-corrosion caused by chlorides. The third crack mode, an intergranular network, was most probably the result of hydrogen sulphide attack. The 13-year service life of the elbow made it difficult, if not impossible, to determine the order of the corrosion mechanisms or the length of time it took to reach the present state of degradation after the initiation of corrosion. Based on the long service life the present material has given, it was recommended that it be used again.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... Abstract Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... Abstract The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment. elevated-temperature life assessment fabrication failure analysis fatigue life assessment fitness-for-service life assessment material defects nondestructive inspection stress...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001563
EISBN: 978-1-62708-230-3
... Abstract An Inconel-clad SA-212 Grade B carbon steel inlet cone with an anticipated 25-year service life failed in a localized area after only seven years of service. The failure was caused by an erosion/corrosion leak at the midsection. Erosion/corrosion was confined to a localized area...
Abstract
An Inconel-clad SA-212 Grade B carbon steel inlet cone with an anticipated 25-year service life failed in a localized area after only seven years of service. The failure was caused by an erosion/corrosion leak at the midsection. Erosion/corrosion was confined to a localized area directly facing the steam inlet nozzle. The Inconel cladding was intact elsewhere in the inlet cone with insignificant corrosion-related degradation. In the absence of the conditions that led to erosion/corrosion, the Inconel clad carbon steel was considered adequate for the intended service. As a corrective measure, a solid Inconel liner was recommended in the areas of direct steam impingement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001519
EISBN: 978-1-62708-223-5
... Abstract An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture...
Abstract
An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture, followed by failure of the collet, which shattered one of its arms when it struck the work table. Scanning electron microscopy showed the presence of hairline crack indications along grain facets on the fracture surface of the bolt. This, coupled with stepwise cracking in the material, generally raised suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested to change its cleaning practice from pickling to grit blasting.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048616
EISBN: 978-1-62708-217-4
... to 1000 deg F), but that of the bolt is lower. The T-bolt broke after three years of service. The expected service life was equal to that of the aircraft. It was found that the bolt broke as a result of SCC. Thermal stresses were induced into the bolt by intermittent operation of the jet engine...
Abstract
A T-bolt was part of the coupling for a bleed air duct of a jet engine on a transport plane. Specifications required that the 4.8 mm diam component be made of AISI type 431 stainless steel and heat treated to 44 HRC. The operating temperature of the duct is 425 to 540 deg C (800 to 1000 deg F), but that of the bolt is lower. The T-bolt broke after three years of service. The expected service life was equal to that of the aircraft. It was found that the bolt broke as a result of SCC. Thermal stresses were induced into the bolt by intermittent operation of the jet engine. Mechanical stresses were induced by tightening of the clamp around the duct, which in effect acted to straighten the bolt. The action of these stresses on the carbides that precipitated in the grain boundaries resulted in fracture of the bolt. Due to the operating temperatures of the duct near the bolt, the material was changed to A-286, which is less susceptible to carbide precipitation. The bolt is strengthened by shot peening and rolling the threads after heat treatment. Avoiding temperatures in the sensitizing range is desirable, but difficult to ensure because of the application.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001742
EISBN: 978-1-62708-217-4
... various modifications, such as a thicker rod, fatigue resistant bolts, and more accurate preload measurements. The configuration of these rods were changed to a tongue-and-groove design to increase service life. Bolted joints Connecting rods Design Helicopters Specifications Torque Metal...
Abstract
In a helicopter engine connecting rod, high-cycle, low-stress fatigue fractures in bolts and arms progressed about 75% across the section before the final rupture. Factors involved were insufficient specified preload, inadequate tightening during assembly, and engine overspeed. The assigned main causes were design deficiency, improper maintenance during overhaul, and abnormal service operation. The problem can be solved by proper overhauling that ensures bolted assemblies are tightened evenly and accurately, in accordance with recommended torque values. Also, the manufacturer made various modifications, such as a thicker rod, fatigue resistant bolts, and more accurate preload measurements. The configuration of these rods were changed to a tongue-and-groove design to increase service life.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... Abstract Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001715
EISBN: 978-1-62708-219-8
... with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general...
Abstract
Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels, and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general corrosion, where the cross section of the wire is reduced until the strength of the wire is exceeded. Most of the failures evaluated were attributed to stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047321
EISBN: 978-1-62708-224-2
... Abstract A 58.4 cm (23 in.) diam heavy-duty brake drum component of a cable-wound winch broke into two pieces during a shutdown period. Average service life of these drums was two weeks; none had failed by wear. The drums were sand cast from ductile iron. During haul-out, the cable on the cable...
Abstract
A 58.4 cm (23 in.) diam heavy-duty brake drum component of a cable-wound winch broke into two pieces during a shutdown period. Average service life of these drums was two weeks; none had failed by wear. The drums were sand cast from ductile iron. During haul-out, the cable on the cable drum drove the brake drum, and resistance was provided by brake bands applied to the outside surface of the brake drum. Friction during heavy service was sufficient to heat the brake drum, clutch mount, and disk to a red color. Examination of the assembly indicated that the brake drum would cool faster than its mounts and would contract onto them. Brittle fracture of the brake drum occurred as a result of thermal contraction of the drum web against the clutch mount and the disk. The ID of the drum web was enlarged sufficiently to allow for clearance between the web and the clutch mount and disk at a temperature differential of up to 555 deg C (1000 deg F). With the adoption of this procedure, brake drums failed by wear only.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001196
EISBN: 978-1-62708-224-2
... Abstract A forged alloy steel arm of a lifting fork with an approximate cross section of 150 x 240 mm (5.92 x 9.45 in.) fractured after only a short service life on a lift truck. The fracture surface had the appearance of a fracture originating from a surface crack. Analysis (visual inspection...
Abstract
A forged alloy steel arm of a lifting fork with an approximate cross section of 150 x 240 mm (5.92 x 9.45 in.) fractured after only a short service life on a lift truck. The fracture surface had the appearance of a fracture originating from a surface crack. Analysis (visual inspection, 200x micrographs, chemical analysis, and metallographic examination) supported the conclusion that the primary cause of the failure was the brittleness (lack of impact toughness) of the steel. The coarse bainitic microstructure was inadequate for the service application. The microstructure resulted from either improper heat treatment or no heat treatment after the forging operation. The surface cracks in the lifting-fork arm acted as starter notches (stress raisers), assisting in the initiation of fracture. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread...
Abstract
Hydrogen-assisted stress-corrosion cracking failure occurred in four AISI 4137 chromium molybdenum steel bolts having a hardness of 42 HRC. The normal service temperature (400 deg C, or 750 deg F) was too high for hydrogen embrittlement but, the bolts were subjected also to extended shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread roots and the fillet under the bolt head. Multiple, branched cracking was present in a longitudinal section through the failed end of one bolt, typical of hydrogen-assisted SCC in hardened steels. Chlorides were detected within the cracks and on the fracture surface. The failed bolts were replaced with 17-4 PH stainless steel bolts (Condition H 1150M) having a hardness of 22 HRC.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
... C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence...
Abstract
The splined shaft (1040 steel, heat treated to a hardness of 44 to 46 HRC and a tensile strength of approximately 1448 MPa, or 210 ksi) from a front-end loader used in a salt-handling area broke after being in service approximately two weeks while operating at temperatures near -18 deg C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high. Recommendations include redesign of the fillet radius to a minimum of 1.6 mm (0.06 in.) and a maximum surface finish in the spline area of 0.8 microns. Material for the shafts should be modified to a nickel alloy steel, heat treated to a hardness of 28 to 32 HRC before machining.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
..., design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001772
EISBN: 978-1-62708-241-9
... Abstract A cast silicon bronze (UNS C86700) impeller that had been severely corroded was submitted for failure analysis. The failed part was used to pump potable water, but service life and chlorine content of the water were unknown. The impeller displayed a Cu-rich red phase on its surfaces...
Abstract
A cast silicon bronze (UNS C86700) impeller that had been severely corroded was submitted for failure analysis. The failed part was used to pump potable water, but service life and chlorine content of the water were unknown. The impeller displayed a Cu-rich red phase on its surfaces and showed a pattern very similar to dezincification. Further investigation to determine the cause of damage using light microscopy and SEM-EDS techniques revealed that the microstructure consisted of multiple phases and that a Si-rich phase was being preferentially attacked, leading to increased porosity. After a thorough examination, it was concluded that the part had failed due to dealloying via desiliconification.
1