1-20 of 23 Search Results for

semiconductors

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... small area analysis, imaging Ease of use, quantification Chemical and molecular analysis, imaging Limitations Insulator analysis challenging, damaging to organics Very few Quantification difficult Major applications Semiconductors, electronics, metallurgy All industries Polymers...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
..., molecular Strengths Ultimate small area analysis, imaging Ease of use, quantification Chemical and molecular analysis, imaging Limitations Semiconductive Very few Quantification difficult Major applications Semiconductors, electronics All industries Polymers, contamination, trace metal...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001843
EISBN: 978-1-62708-241-9
... structure and is a semiconductor White (beta) tin—body centered tetragonal structure and in the form of metallic tin. Rhombic (gamma) tin—also metallic. Lead Mercury Cadmium Hexavalent chromium (Cr 6+ ) Polybrominated biphenyls (PBB) Polybrominated diphenyl ether (PBDE...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... constituents in metal alloys. Optical emission spectroscopy is also used for a variety of other analyses, including: Fast elemental depth profiling of technical coatings Determination of trace impurity concentrations in semiconductor materials Wear metals analysis in oils and lubricants Rapid...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... to the energy of the incoming x-ray. Placing a voltage across the chip makes it function as an intrinsic semiconductor, and the electrons move to one side of the chip while the holes move to the opposite side, producing a charge pulse from the device. Because the charge pulse is proportional to the number...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... to detect the various wavelength x-rays ( Fig. 5 ). This configuration is excellent for the quantitative analysis of flat samples but is awkward and time-consuming to set up and is difficult to use on irregular topography, such as a fracture surface. With the advent of semiconductor devices, a new type...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... and nonlinear properties of the parts and to apply any type of thermal cycle allows many failure analysis scenarios to be evaluated. The use of FEA in this area is expected to increase. Analysis of microelectromechanical systems (MEMS) typically made using semiconductor fabrication and processing techniques...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... in many respects to the specimen current, charge collection techniques are used extensively in the semiconductor industry ( Ref 3 ) whilst the EBSP signal is used to determine crystal structure and orientation ( Ref 4 ). More information concerning the use of these signals is available ( Ref 5 ). Vacuum...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
...” in this Volume. Additional signals that can be monitored in an SEM are the specimen current and the electron backscattered diffraction (EBSD) pattern. Similar in many respects to the specimen current, charge-collection techniques are used extensively in the semiconductor industry ( Ref 4 ), while the EBSD...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
.... Analysis of MEMS typically made using semiconductor fabrication and processing techniques is another potential application, and FEA applications designed for these special needs are becoming available. Impact Analysis Dynamic Impact is one of the most severe conditions that any design engineer has...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... methods include the use of strain gage load cells, and displacement-based probes. Resistance and semiconductor strain gage load cells have an array of strain gages calibrated to measure force in one or more principal direction, from a single-axis force or torque measurement to multi-axis load cells which...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... pathways for conduction through insulating polymer matrices. Finally, highly conjugated polymers such as polyacetylene and polyaniline provide sufficient electron movement to reach semiconductor conductivity. For full conductivity, they rely on dopants. Mechanical analogs to purely elastic Hookean...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... limited to polycrystalline materials ( Ref 6 ), that is, in materials with a grain structure (long-range ordering) as normally found in metals and their alloys as well as in polycrystalline ceramics (i.e., oxides, carbides, nitrides, etc.). Exceptions occur in semiconductor analysis in which strain (Eq 2...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9