1-20 of 76 Search Results for

seawater

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091394
EISBN: 978-1-62708-227-3
... Abstract An austenitic stainless steel (type 316/316L stainless steel, schedule 40, 64 mm (2.5 in.) diam and larger) piping network used in the fire-sprinkler system in a large saltwater passenger and car ferry failed by rapid leaking. Operating conditions involved stagnant seawater at ambient...
Image
Published: 01 January 2002
Fig. 3 Galvanic series of metals and alloys in seawater. Alloys are listed in order of the potential they exhibit in flowing seawater; those indicated by the black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near More
Image
Published: 01 January 2002
Fig. 48 Effect of velocity of seawater at atmospheric temperature on the corrosion rate of steel More
Image
Published: 15 January 2021
Fig. 3 Galvanic series of metals and alloys in seawater. Alloys are listed in order of the potential they exhibit in flowing seawater; those indicated by a black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near More
Image
Published: 15 January 2021
Fig. 48 Effect of velocity of seawater at atmospheric temperature on the corrosion rate of steel More
Image
Published: 01 June 2019
Fig. 19 Contamination by Seawater: The steel plates shown here (a) were carried on a ship which caught fire off Singapore. The fire was fought with seawater, and by the time the plates were removed there was very visible corrosion (see far right) and a claim was made for 80% damage allowance More
Image
Published: 01 December 2019
Fig. 4 Calculated crack length vs. time for ASB tested in seawater + ammonia showing subcritical growth (HTP-4) More
Image
Published: 01 December 2019
Fig. 7 ASB tested in seawater (HTP-6) showing a small band of IG fracture More
Image
Published: 01 December 2019
Fig. 8 ASB tested in seawater + ammonia (HTP-5) showing IG fracture More
Image
Published: 01 December 2019
Fig. 9 Polished cross section of ASB specimen tested in seawater + ammonia (HTP-5) showing a in-plane crack growth b longitudinal IG features in MVC area of fracture surface More
Image
Published: 01 December 2019
Fig. 11 NAB RSL fracture surfaces in a laboratory air (MVC), b seawater (MVC), and c seawater + ammonia (IG). Fatigue precrack is located at bottom More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001334
EISBN: 978-1-62708-215-0
... that the tube failed from crevice corrosion under seawater deposits that had formed on the inner surface. Mechanical cleaning of the condenser tubes every 6 months and installation of intake screens of smaller mesh size were recommended. Aluminum bronzes Nuclear reactor components Seawater environment...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001103
EISBN: 978-1-62708-214-3
... by stress-corrosion cracking. It was surmised that seawater or some other corrosive substance was present in sufficient quantity to induce intergranular cracking at regions of high stress concentration. It was recommended that all tap bolts be replaced with new bolts made from an alloy with a higher copper...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001673
EISBN: 978-1-62708-227-3
... Abstract The failure of a 90-10 cupronickel heat exchanger tube resulted in flooding of the vessel and subsequently sinking it. The corrosion of the cupronickel alloy was facilitated by the high sulfur content of the seawater in which it operated. The failure modes were anodic dissolution...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048702
EISBN: 978-1-62708-220-4
... Abstract An aluminum brass seawater surface condenser failed due to pitting after less than one year of service. Large pits filled with a green deposit were evidenced under the nonuniform black scale present over the entire inside surface of the tube. The black deposit was identified...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001809
EISBN: 978-1-62708-241-9
.... The replacement pump was slightly oversized, which had the potential to cause erosion or cavitation. The impeller was coated with a brushable ceramic, which was typical for seawater impellers, for additional corrosion resistance and mechanical strength. The pump is a split case, double suction, with equal suction...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048043
EISBN: 978-1-62708-224-2
... terminal specimen. It was indicated by the holes in the region adjoining the crack and rough texture of the crack surface that a corrosive medium (presumably seawater) had entered the crack from the inner surface of the fitting and coupled with the hairline crack to develop crevice corrosion. The crack...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091806
EISBN: 978-1-62708-219-8
... station condenser tubing cooled by seawater for two copper alloys, an aluminum brass alloyed with arsenic (UNS C68700, ASTM B111, or Cu-Zn-20Al DIN17660), and a cupronickel 70-30 alloy with iron added (C71500, ASTM B111, or Cu-Ni-30Fe DIN17665)) supported the conclusion that the failure was caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048733
EISBN: 978-1-62708-235-8
... Abstract The brine-heater shell in a seawater-conversion plant failed by bursting along a welded joint connecting the hot well (C70600 per ASTM B 466) to the heater shell (ASTM A285, grade C steel). Three cracks in the welded joints between the heater shell and the hot well were revealed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
... containing a fairly high concentration of chlorides (seawater typically contains about 19,000 ppm of dissolved chlorides) and traces of ammonia. Recommendations included redesign of the slots, shot-blasting the formed retainers, and changing the material to a different type of silicon bronze-copper alloy...