Skip Nav Destination
Close Modal
Search Results for
rolling-element bearings failures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 125 Search Results for
rolling-element bearings failures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
..., failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples. corrosion damage...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001900
EISBN: 978-1-62708-225-9
.... , Failures of Rolling-Element Bearings , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 490 – 513 10.31399/asm.hb.v11.a0001810 ...
Abstract
Incorrect grounding of an electric motor resulted in electric current passing through a 52100 steel ball bearing and caused multiple arcing between the rolling elements. The multiple arcing developed a pattern on the outer race known as ‘fluting’. A section of ball race outer showed the distinct banding (fluting) resulting from spark discharges while the bearing was rotating. The severe distress of the surface resulted in unacceptable levels of vibration. An SEM photograph of the banded regions showed smoothing of the asperities from continued operation is evident. In the craters the residue of partial melting was seen.
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 18 Comparing the actual with the nominal for eliminating potential root causes at an early stage of the rolling-element bearing failure analysis. Source: Ref 30
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 17 (Part 1) Example of data collection and questions that the rolling-element bearing failure analyst should consider for collecting the data. Source: Ref 24 – 26
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 17 (Part 2) Example of data collection and questions that the rolling-element bearing failure analyst should consider for collecting the data. Source: Ref 24 – 26
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001741
EISBN: 978-1-62708-234-1
... fatigue has occurred due to the overload condition. Selected References Selected References • Widner R.L. , Failures of Rolling-Element Bearings , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 490 – 513 10.31399/asm.hb.v11.a0001810...
Abstract
Butterfly-shaped microstructural features in tempered martensite in an otherwise clean steel suggested that overloading led to premature spalling of a coal-crushing plant taper bearing. Extensive rolling contact fatigue occurred because of the overload condition. The crusher was designed to handle soft lignite coals but had been used to crush hard deep-mined anthracite coals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001740
EISBN: 978-1-62708-234-1
... the wear progressed into severe coarse grain spalling (b). Selected References Selected References • Widner R.L. , Failures of Rolling-Element Bearings , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 490 – 513 10.31399/asm.hb.v11.a0001810...
Abstract
The contamination of lubrication with powdered stone resulted in progressive wear of the internal surfaces of a bearing. Because of the motion of rollers, the inner race exhibited an unusual cyclic washboard wear pattern. Because of a lack of bearing conformity, wear progressed into severe coarse-grain spalling.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0091893
EISBN: 978-1-62708-218-1
... of Rolling-Element Bearings, Failure Analysis and Prevention , Vol 10, Metals Handbook , 8th ed., American Society for Metals, 1975, p 416–437. Selected Reference Selected Reference • Bayer R.G. , Fundamentals of Wear Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook...
Abstract
An automotive front-wheel outer angular-contact ball bearing generated considerable noise shortly after delivery of the vehicle. The inner and outer rings were made of seamless cold-drawn 52100 steel tubing, the balls were forged from 52100 steel, and the retainer was stamped from 1008 steel strip. The inner ring, outer ring, and balls were austenitized at 845 deg C (about 1550 deg F), oil quenched, and tempered to a hardness of 60 to 64 HRC. Investigation (visual inspection) supported the conclusion that failure was caused by fretting due to vibration of the stationary vehicle position without bearing rotation. Recommendations included improving methods of securing the vehicle during transportation to eliminate vibrations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001191
EISBN: 978-1-62708-225-9
...: Nital. 500× Fig. 9 Structure of core of the rings. Etching: Nital. 500× Reference Reference 1. Naumann F. K. , Spies F. , Prakt. Metallographie 5 ( 1968 ) 291/298 Selected References Selected References • Widner R.L. , Failures of Rolling-Element...
Abstract
Inner rings of spherical roller bearings out of full hardening ball bearing steel 100 CrMn 6 (Fe-1C-1.5Cr-1.1Mn, Material No. 1.3520) failed in service. Due to the cracks, parts from the middle flange broke or the rings failed in radial direction completely. All the cracks and fracture originated from the middle flange. In all of the three rings one flank showed heavy wearing and scouring. The cracks started from the edge of this flank with the cylindrical mantle surface of the middle flange. The cracking resembled fatigue cracking. However, in a fine-grained hardened steel such as this, fracture faces due to stress-cracking and overload fracture look the same. Metallographic examination showed the failure of the rings was a result of repeated heating and rapid cooling of the surface due to the grinding of the bearings on one flank of the middle flange. The stress-cracks (grindcracks) spread in steps which finally led to the breaking off of parts from the middle flange and complete failure of the rings.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
... of the flaking on the outer race and points to an assembly error as the root cause of failure. References References 1. Failure of rolling element bearings . In: Failure Analysis and Prevention , vol. 11 , ASM Handbook , pp. 501, 503 – 501, 504 . ASM International , Materials Park, OH ( 1995...
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001796
EISBN: 978-1-62708-241-9
... 27 July 2012 2. RP newswire: Surface coating, ceramic rolling elements reduce bearing failure . http://www.reliableplant.com/Read/19978/surface-coating,-ceramic-rolling-elements-reduce-bearing-failure . Accessed 27 July 2012 3. Weigand M. : Lubrication of rolling bearings...
Abstract
A tri-lobe cylindrical roller bearing was submitted for investigation to determine the cause of uniformly spaced axial fluting damages on its rollers and outer raceway surfaces. The rollers and raceways were made from premium-melted M50 and M50NiL, aircraft quality steels often used in bearings to minimize the effects of orbital slippage and rolling-contact fatigue. The damaged areas were examined under a scanning electron microscope, which revealed a high density of microcraters, characteristic of local melting and material removal associated with bearing currents. Investigators also examined the effect of electrical discharge on crater dimensions and density and the role that thermoelectric voltage potentials may have played.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
.... The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing. Nonmetallic inclusions Rolling-element bearing Tempered martensite Fe-0.2C-3.5Ni-1.5Cr Fatigue fracture Rolling-element...
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... of rolling element bearings . Chin. J. Aeronaut . 23 , 123 – 136 ( 2010 ) 10.1016/S1000-9361(09)60196-5 7. Prashad H. : Diagnosis of failure of rolling-element bearings of alternators—a study . Wear 198 , 46 – 51 ( 1996 ) 10.1016/0043-1648(96)06926-8 8. Yu Z.Q. , Yang...
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
... As already mentioned, fatigue in a rolling bearing leads to a type of failure to which the term “flaking” is commonly applied and this will now be considered in greater detail. In general, the pits which precede flaking appear initially on one or other of the races rather than on the rolling elements...
Abstract
Factors which may lead to premature roller bearing failure in service include incorrect fitting, excessive pre-load during installation, insufficient or unsuitable lubrication, over-load, impact load vibration, excessive temperature, contamination by abrasive matter, ingress of harmful liquids, and stray electric currents. Most common modes of failure include flaking or pitting (fatigue), cracks or fractures, creep, smearing, wear, softening, indentation, fluting, and corrosion. The modes of failure are illustrated with examples from practice.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
.... A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001754
EISBN: 978-1-62708-241-9
.../10.31399/asm.hb.v18.a0006358 Introduction and Background Laboratory Analysis Beveled Gear and Sleeve Outer Race (OR) Rolling Elements (Balls) Inner Race (IR) Bearing Analysis Conclusion Discussion Debris Analyses Summary of Key Findings The discovery of foreign...
Abstract
The case study presented in this article details the failure investigation of an M50 alloy steel bearing used in a jet engine gearbox drive assembly. It discusses the investigative steps and analytic tools used to determine the root cause, highlighting the importance of continuous, thorough questioning by the investigating activity. The combined analyses demonstrated that the bearing failed by a single event overload as evidenced by bulk deformation and traces of foreign material on the rolling elements. The anomalous transferred metal found on the rolling elements subsequently led to the discovery of overlooked debris in an engine chip detector, and thus resulted in a review of several maintenance practices.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
.... Anon, Friction, Wear, and Lubrication Terms and Definitions , 1st revision, Organization for Economic Co-Operation and Development, Paris, 1968 22. Wren F.J. and Moyer C.A. , Modes of Fatigue Failures in Rolling Element Bearings , Proc. Inst. Mech. Eng. , Vol 179 (Part 3D), 1964...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... the ball bearing manufacturing industry. Rolling-contact fatigue (RCF) is the surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. Rolling-contact fatigue is encountered most often in rolling-element bearings and gears. The failure...
Abstract
Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. This article briefly describes the various surface cracks caused by manufacturing processing faults or blunt impact loads on ceramic balls surfaces. It discusses the propagation of fatigue cracks involved in rolling contacts. The characteristics of various types of RCF test machines are summarized. The article concludes with a discussion on the various failure modes of silicon nitride in rolling contact. These include the spalling fatigue failure, the delamination failure, and the rolling-contact wear.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001790
EISBN: 978-1-62708-241-9
... induced only by normal service loads, there was little likelihood that the inclusions served as failure initiation sites. Further examination of the bearing elements revealed an abnormal wear pattern, consistent with the application of elevated bending loads. The root cause of failure was determined...
Abstract
The failure of a high-speed pinion shaft from a marine diesel engine was investigated. The shaft, which had been in service for more than 30 years, failed shortly after the bearings were replaced. Examination of the shaft revealed cyclic fatigue, with a substantial distribution of nonmetallic inclusions near the fracture initiation site. Fracture mechanics analysis indicated that, if stresses acting on the shaft were induced only by normal service loads, there was little likelihood that the inclusions served as failure initiation sites. Further examination of the bearing elements revealed an abnormal wear pattern, consistent with the application of elevated bending loads. The root cause of failure was determined to be an increase in service stresses after bearing replacement along with the presence of nonmetallic inclusions in the shaft.
1