Skip Nav Destination
Close Modal
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
Search Results for
rolling mills
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 87 Search Results for
rolling mills
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001231
EISBN: 978-1-62708-232-7
...Abstract Abstract The rim of a gear wheel of 420 mm width and 3100 mm in diam broke after four years of operation time in a sheet bar three-high rolling mill. The rim was forged from steel with about 0.4C, 0.8Si and 1.1Mn. The rim started to break in the tooth bottom from a fatigue fracture...
Abstract
The rim of a gear wheel of 420 mm width and 3100 mm in diam broke after four years of operation time in a sheet bar three-high rolling mill. The rim was forged from steel with about 0.4C, 0.8Si and 1.1Mn. The rim started to break in the tooth bottom from a fatigue fracture which extended from the gear side to more than half the rim width. A second incipient failure commenced from the opposite tooth bottom. Both fractures joined below the tooth of the rim. Both incipient cracks were fatigue fractures with several starting points, all located in the transition between tooth flank and tooth bottom. The remaining failure was a fine-grained ductile fracture. It was found that the teeth were not supported uniformly over the entire width and were thus overloaded on one side. The transition from the tooth flanks to the tooth bottom was sharp-edged, causing a tension peak there. The tooth bottom was machined only roughly. Also, the yield point was a little bit too low.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001513
EISBN: 978-1-62708-232-7
...Abstract Abstract While in the stationary mode, capillary action at the contact line between roller and race in a steel rolling mill taper bearing caused a concentration of lubricant and moisture to occur. This lead to lines of corrosion pits at roller intervals. During subsequent operation...
Abstract
While in the stationary mode, capillary action at the contact line between roller and race in a steel rolling mill taper bearing caused a concentration of lubricant and moisture to occur. This lead to lines of corrosion pits at roller intervals. During subsequent operation, the individual corrosion pits acted as stress raisers and initiated coarse grain spalling. Due to a bending moment on the rotating element, this in turn initiated bending fatigue normal to the longitudinal axis, which propagated through to the bore of the inner ring. Stain marks were visible in the bore at a spacing corresponding to roller intervals where lubricant had flowed through the cracks from the race.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001255
EISBN: 978-1-62708-232-7
...Abstract Abstract Several back up rolls of 1400 mm barrel diam from a broad strip mill broke after a relatively short operating time as a result of bending stresses when the rolls were dismantled. The fracture occurred in the conical region of the neck at about 600 mm diam. The rolls were...
Abstract
Several back up rolls of 1400 mm barrel diam from a broad strip mill broke after a relatively short operating time as a result of bending stresses when the rolls were dismantled. The fracture occurred in the conical region of the neck at about 600 mm diam. The rolls were shaped steel castings with 0.8 to 1.0% C, 1% Mn, 1% Cr, 0.5% Mo and 0.4% Ni and were heat treated to a tensile strength of 950 N/sq mm. Because the bending stress on mounting was only 42 N/sq mm in the fracture cross section, it was evident at the outset that material defects had promoted the fracture. In the case of this roll and the other broken rolls, the cracking and fracture were promoted by various casting defects. Investigation of the rolls showed that both the breaking off of the neck and the disintegration of the barrel edges was caused by material defects, more exactly casting defects. The fractures on the other rolls examined were so badly rusted or contaminated that they were incapable of yielding any information.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
...Abstract Abstract Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill...
Abstract
Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating environment, the failure involves a particular roll or a specific batch of rolls. This paper provides a microstructural insight into the cause of premature breakage of a second-intermediate Sendzimir mill drive roll used at a stainless steel sheet rolling plant under the Steel Authority of India Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed to elucidate specific microstructural inadequacies that accentuated the failure. The study reveals that even through retained austenite content is low (6.29 vol%) and martensite is non-acicular, the roll breakage is a consequence of intergranular cracking caused by improper carbide morphology and distribution.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
...Abstract Abstract A recuperator used for preheating the combustion air for a rolling mill furnace failed after a relatively short service time because of leakage of the pipes in the colder part. The 6 % chrome steel pipes used for the warmer part connected by means of welding with austenitic...
Abstract
A recuperator used for preheating the combustion air for a rolling mill furnace failed after a relatively short service time because of leakage of the pipes in the colder part. The 6 % chrome steel pipes used for the warmer part connected by means of welding with austenitic electrodes to the unalloyed mild steel pipe of larger diam. Visual inspection showed corrosion and deep, trench-like erosion over the entire circumference of the seam on the side of the thicker mild steel pipe. Examination using the V2-A solution for picral etch showed the microstructure of the unalloyed pipe had become coarse-grained and acicular, and the microstructure of the welding seam had become predominantly martensitic as a result of the mixing of the weld metal with the fused pipe material. The chrome steel pipe had become partially transformed to martensite or bainite at the transition to the weld. Thus, the failure occurred due to typical contact corrosion wherein the alloyed welding seam represented the less noble electrode. The martensitic structure may have contributed to the failure as well. Due to the typical nature of the failure, no recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
...Abstract Abstract Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048273
EISBN: 978-1-62708-225-9
... teeth Rolling mills Shock loading 2317 Fatigue fracture The bevel pinion shown in Fig. 1(a) was part of a drive unit in an edging mill. The pinion had been in service about 3 months when several teeth failed. Specifications required that the pinion be made from a 2317 steel forging...
Abstract
Several teeth of a bevel pinion which was part of a drive unit in an edging mill failed after three months in service. Specifications required that the pinion be made from a 2317 steel forging and that the teeth be carburized and hardened to a case hardness of 56 HRC and a core hardness of 250 HRB. Two teeth were revealed by visual examination to have broken at the root and fatigue marks extending across almost the entire tooth were exhibited by the surface of the fracture. Cracking in all the tooth was showed by magnetic-particle inspection. The pinion was concluded to have failed by tooth-bending fatigue. Spalling was also noted on the pressure (drive) side of each tooth at the toe end which indicated some mechanical misalignment of the pinion with the mating gear that caused the cyclic shock load to be applied to the toe ends of the teeth.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001245
EISBN: 978-1-62708-232-7
... be very sensitive against additional stresses, be these of a mechanical or thermal nature. This contributed to the fragmenting of the roll face. Cracking (fracturing) Residual stress Rolling mill rolls Thermal stresses Fe-0.83C-1.60Cr Heat treating-related failures A working roll of 210 mm...
Abstract
A working roll of 210 mm diam and 500 mm face length was examined because of shell-shaped fractures. The roll consisted of Fe-0.83C-1.6Cr steel. The chromium content was low for a roll of this diam. The crack origin was located about 10 mm under the roil face. Surface hardness (HV1) of 900 kp/sq mm was exceptionally high corresponding to the martensitic peripheral structure. An untempered piece with such a thick cross section and a hardened peripheral zone with such high hardness must have high residual stresses that culminate in the transition zone. Therefore it must be very sensitive against additional stresses, be these of a mechanical or thermal nature. This contributed to the fragmenting of the roll face.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001608
EISBN: 978-1-62708-236-5
..., including the purchasing specifications and observations and photographs taken during surveys enroute. A frequent conclusion of such investigations is that the alleged corrosion is of no significance or did not occur during the voyage. Mill scale Rusting Storage Hot-rolled steel Uniform corrosion...
Abstract
Investigation of alleged corrosion damage to hot-rolled steel during transit requires metallurgical, chemical, and corrosion knowledge. Familiarity with non-destructive techniques and sampling procedures is necessary. A complete record of shipment history is also required, including the purchasing specifications and observations and photographs taken during surveys enroute. A frequent conclusion of such investigations is that the alleged corrosion is of no significance or did not occur during the voyage.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001423
EISBN: 978-1-62708-233-4
...Abstract Abstract Five cylinders out of a group of nine in a drying machine developed leaks after a few months service in a textile mill. Leakage was reported from locations between the hoop and body and from the circumferential welds. The materials in the affected area were 18/8 Ti and 18/10/3...
Abstract
Five cylinders out of a group of nine in a drying machine developed leaks after a few months service in a textile mill. Leakage was reported from locations between the hoop and body and from the circumferential welds. The materials in the affected area were 18/8 Ti and 18/10/3/Mo austenitic stainless steels. Examination of the cracks at high magnification revealed them to be of the stress-corrosion type. The welds were of satisfactory quality. Cracking was also visible at these locations, this again being of the stress corrosion type. The method of cylinder construction introduced a crevice between the outer hoop and the cylinder at the inboard edge so that during washing of the rolls, water could penetrate the crevice and subsequent heating would lead to the concentration of chlorides within the crevice. Redesign of the cylinder to eliminate the crevice was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
... hot rolling mills . J. Tsinghua Univ. (Sci&Technol) 45 , 1668 – 1671 ( 2005 ) 22. Takechi H. , Namba K. , Fujiwara K. et al. , Evaluation of subsurface fatigue damage in strip mill rolls by an x-ray diffraction method . Trans. Iron Steel Inst. Jpn. 21 , 92 – 99...
Abstract
Rolling contact fatigue is responsible for a large number of industrial equipment failures. It is also one of the main failure modes of components subjected to rolling contact loading such as bearings, cams, and gears. To better understand such failures, an investigation was conducted to assess the role of friction in subsurface fatigue cracking in rolling-sliding contact applications. Based on the results of stress calculations and x-ray diffraction testing of steel samples, friction contributes to subsurface damage primary through its effect on the distribution of orthogonal shear stress. Although friction influences other stress components, the effect is relatively insignificant by comparison. It is thus more appropriate to select orthogonal shear stress as the critical stress when assessing subsurface rolling contact fatigue in rolling-sliding systems.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001232
EISBN: 978-1-62708-233-4
... of a valve spring, origin of fracture marked by arrow. 10× Fig. 6 Broken cabin bolt from an elevator. 1× Fig. 7 Broken cam of a rolling mill clutch with many vibrational fractures originating from a key-groove, Approx 1 2 × Fig. 8 a). Broken piston rod of a steam...
Abstract
A bolt breaks along a change in cross section well below its rated capacity. An anchoring screw spins freely in place, having snapped at its first supporting thread. A motor unexpectedly disengages its load, its driveshaft having fractured near a keyway. Such failures – involving axles, leaf springs, engine rods, wing struts, bearings, gears, and more – can occur, seemingly without cause, due to vibrational fracture. Vibrational fractures begin as cracks that form under cyclic loading at nominal stresses which may be considerably lower than the yield point of the material. The fracture is proceeded by local gliding and the development of cracks along lattice planes favorably orientated with respect to the principal stress. This non-reversible process is often misleadingly called “fatigue” and presents significant challenges to engineering teams that ill-advisedly take to searching for material faults. Several examples of notch-induced vibrational fractures are presented along with guidelines for investigating their cause.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
... , Iron and Steel Society (ISS) , Warrendale, PA ( 2002 ) 3. Venugopal Reddy A. : Investigation of Aeronautical and Engineering Failures , CRC Press ( 2004 ) 4. Prasad M.S. , Dhua S.K. , Singh C.D. , Ray A. : Genesis of spalling in tandem mill work-rolls: some...
Abstract
Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed the presence of a characteristic fatigue crack propagation pattern (beach marks) and radial chevron marks indicating the occurrence of final overload through a brittle intergranular fracture. The collected evidence suggests that surface-initiated cracks propagated by fatigue led to spalling, resulting in severe work roll damage as well as machine downtime and increased maintenance costs.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
...-phase steels . Metall. Mater. Trans. A 40A , 2145 – 2159 ( 2009 ) 10.1007/s11661-009-9899-9 10. Quintana M.J. , Gonzalez R. , Verdeja L.F. , Verdeja J.I. : Dual-phase ultrafine-grained steels produced by controlled rolling processes . In: Materials Science...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001424
EISBN: 978-1-62708-233-4
..., 11,000 volts, 745/592 rpm. It drove two 1,615 kW, 420 volt, D.C. generators with a 25-ton flywheel interposed between them, supplying power to a 4,000 hp 840 volt 43/90 rpm, D.C. motor driving a rolling mill at a steel works. The machine had been in almost continuous operation for seven years, the first...
Abstract
Two examples concerning fabricated mild steel rotor spiders which failed due to lack of torsional rigidity, probably supplemented by the presence of high internal stress, are described. The machine concerned in the first case was a 3,000 hp three-phase slip-ring motor. In the second case the machine was a 200 kW alternator, direct-driven by a diesel engine running at 750 rpm. Both the foregoing failures reveal the same basic weakness, i.e., insufficient rigidity when subjected to variations or reversals of torque. In the first case, the bars welded to the arms were inadequately supported in a lateral direction, so that excessive stresses of a fluctuating nature were set up in the welds as a result of the frequent load changes that arose in service. This weakness was eliminated when designing the replacement spider. In the second example, failure also arose as a result of deficient torsional rigidity with the consequent development of excessive stresses in the welds at the junctions of the bars with the sleeve, the torque being of a fluctuating character due to the impulses imparted by the engine.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
... that fractured was ordered along with several other, identical rolls by the mill at the same time. These rolls were first balanced by the manufacturer at 1080 rpm. Upon receipt by the mill, the rolls were rebalanced at 840 rpm. Recall that once placed in operation with a felt speed of 3100 ft/min (946 m/min...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... encountered in sugar mills was analyzed (Ref 5). The cane juice is extracted using cane-crushing mills, which consist of four or six rolls. To optimize the extraction of juice, these crushing rolls are designed with a high coefficient of friction and very low rotational speed (4 to 5 rpm). The journals...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... are typically limited to two-dimensional deformation. Metalworking operations are also classified as either primary metalworking (where mill forms such as bar, plate, tube, sheet, and wire are worked from ingot or other cast forms) or secondary metalworking (where mill products are further formed into finished...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... (rolling) bearing loads produce subsurface cracking and subsequent surface wear. This article primarily covers the topic of abrasive wear failures. However, the section “Wear Failure Analysis” in this article discusses methods that may apply to any form of wear mechanism, because it is important...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048073
EISBN: 978-1-62708-224-2
...Abstract Abstract A drum pinion shaft (1030 steel) which was part of the hoisting gear of a crane (capacity 18,140-kg) operating in a blooming mill failed while lifting a 9070 kg load. Chatter marks, rough-machining marks, and sharp corner radii were revealed in the keyway which extended...
Abstract
A drum pinion shaft (1030 steel) which was part of the hoisting gear of a crane (capacity 18,140-kg) operating in a blooming mill failed while lifting a 9070 kg load. Chatter marks, rough-machining marks, and sharp corner radii were revealed in the keyway which extended into a shoulder at a change in diam. A circular recess below the keyway surface was revealed at each end of the keyway. A sharp corner at the end of the keyway was revealed by examination to be the origin of fracture. Beach marks were found radiating from the origin over a large portion of the fracture surface which confirmed failure of the shaft by fatigue fracture. As a corrective measure the shaft was replaced with one made of 4140 steel, quenched and tempered to a hardness of 286 to 319 HRB. The keyway was moved away from the change in section and was machined with a 1.6-mm radius in the bottom corners and a larger-radius fillet was machined at the change in section.