1-20 of 218 Search Results for

rolling contact

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047968
EISBN: 978-1-62708-225-9
... when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure. Computers Loads (forces) Noise Service...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001807
EISBN: 978-1-62708-241-9
...Parameters for rolling contact fatigue test Table 1 Parameters for rolling contact fatigue test P 0 Contact width( a ) Roll/slide ratio Total test time 1400 MPa 704.67 μm 0.05 12,000 s Fig. 6 Results of rolling contact fatigue test: ( a ) varies of friction...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... Abstract Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001500
EISBN: 978-1-62708-221-1
.... The primary failure was associated with the 4820H NiMo alloy steel pinion, and thus the gear was not examined. The mode of failure was rolling contact fatigue, and the cause of failure improper engineering design. The pattern of continual overload was restricted to a specific concentrated area situated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047975
EISBN: 978-1-62708-225-9
... by contact fatigue mechanism (flaking) activated by the subsurface nonmetallic inclusions. Aircraft components Bearing races Flaking Transmissions (sutomotive) Bearing steel Fatigue fracture Rolling-contact wear The pilot of an aircraft reported illumination of the transmission oil-pressure...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
...; vibration detection system; thermocouples monitor temperature (typically 50 to 60 °C, or 120 to 140 °F) Ref 26 (c) Rolling-contact testing apparatus Two hemispherically ground, toroidal rollers loaded against a round bar; 40:1 ratio of roller diameter to bar diameter; 2.7 to 5.5 GPa (390 to 800 ksi...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... Loading configuration of five-ball machine Fig. 4 Loading configuration of ball-on-plate machine Fig. 5 Loading configuration of ball-on-rod machine Abstract Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces...
Image
Published: 01 June 2019
Fig. 2 Section showing race surface. Extensive rolling contact fatigue has occurred due to the overload condition. More
Image
Published: 01 December 2019
Fig. 6 Results of rolling contact fatigue test: ( a ) varies of friction coefficient with the test time,; and ( b ) FWHM along the radii of test samples) More
Image
Published: 30 August 2021
Fig. 26 Gear tooth section. Rolling-contact fatigue distinguished by subsurface shear parallel to surface. Note the undisturbed black oxides at the surface, indicating no surface-material movement. Not etched. Original magnification: 125×. Source: Ref 1 More
Image
Published: 01 January 2002
Fig. 2 Stress risers initiating rolling-contact fatigue failure More
Image
Published: 01 January 2002
Fig. 4 Gear-tooth section. Rolling-contact fatigue. Crack origin subsurface. Progression was parallel to surface and inward away from surface. Not etched. 60× More
Image
Published: 01 January 2002
Fig. 5 Gear-tooth section. Rolling-contact fatigue. Crack origin subsurface. Progression was parallel with surface, inward, and finally to the surface to form a large pit or spall. Not etched. 60× More
Image
Published: 01 January 2002
Fig. 6 Gear-tooth section. Rolling-contact fatigue distinguished by subsurface shear parallel to surface. Note the undisturbed black oxides at the surface, indicating no surface-material movement. Not etched. 125× More
Image
Published: 01 January 2002
Fig. 9 Morphology of cracks leading to rolling-contact fatigue failure of PVD (TiN) coatings. (a) Crack parallel to the interface leading to spalled area for hard substrate (60 HRC) TiN coating. (b) Cracks parallel to the coating-substrate interface for hard substrate (60 HRC) TiN coating. (c More
Image
Published: 01 January 2002
Fig. 10 Rolling-contact fatigue failure modes of thermal spray cermet and ceramic coatings. Source: Ref 84 More
Image
Published: 30 August 2021
Fig. 3 Examples of different rolling-element bearing structures. (a) Point contact solutions for combined loading direction. Left two images: angular contact solutions; right two images: axial loading solutions. (b) Line contact solutions for combined loading direction. Left two images: radial More
Image
Published: 30 August 2021
Fig. 28 How the pressure distribution along a line-contact rolling-element bearing looks while submitted to misalignments or heavy tilting moments. Unloaded portions of the roller length and peak pressures may appear, depending on the load intensities. Source: Ref 31 More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations...