Skip Nav Destination
Close Modal
By
J.B. Elder
By
M. Mobin, A. U. Malik
By
K.V. Kasiviswanathan, N.G. Muralidharan, Baldev Raj
By
George M. Goodrich, Richard B Gundlach, Robert B. Tuttle, Charles V. White
By
K.H. Subramanian, C.F. Jenkins
By
S. F. Hassan, M. R. Alam
By
Daniel N. Hopkins, Daniel J. Benac
By
Scott R. Gertler
By
Stephen L. Meiley
By
R.J. Gommans, K.F. Verheesen, J.H. Heerings
By
Daniel J. Benac
Search Results for
riser design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 39
Search Results for riser design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001284
EISBN: 978-1-62708-215-0
... revealed the presence of cold shuts at the same site in all specimens. It was recommended that all risers be thoroughly inspected and that the bow company work with their die casting shop to design a mold with acceptable filling characteristics. Casting defects Cracking (fracturing) Die casting...
Abstract
Compound bow handle risers that had failed in service and during assembly along with an unassembled riser were submitted for analysis. The risers were die cast from magnesium-base alloy AM60A. Inspection of the failed risers and metallurgical investigations conducted on the stock riser revealed the presence of cold shuts at the same site in all specimens. It was recommended that all risers be thoroughly inspected and that the bow company work with their die casting shop to design a mold with acceptable filling characteristics.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... of the excessive shrinkage voids is beyond the scope of this study, but several possible causes include use of too high a pouring temperature during casting, the lack or inadequacy of metal chills, and poor riser design. The fact that most of the through-wall voids occurred between the 6:00 and 9:00 positions...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Book Chapter
Fracture of Cast Steel Equalizer Beams
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... Abstract Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Book Chapter
Remote Inspection of a 46-Year-Old Buried High-Level Waste Storage Tank
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT...
Abstract
This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT transducers and two cameras. The purpose of this inspection was to verify corrosion models and to investigate the possibility of previously unidentified corrosion sites or mechanisms. The inspections included evaluation of previously identified leak sites, thickness mapping, and crack detection scans on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected indications, four of which were only partially through-wall. The cracks that were examined were found to be slightly longer than expected but still well within the flaw size criteria used to evaluate tank structural integrity.
Book Chapter
Caustic Corrosion Failure of Back Wall Riser Tube in a High-Pressure Boiler
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
... Abstract A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive...
Abstract
A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points.
Book Chapter
Failure of a Yoke Body of Master Slave Manipulator Due to Casting Defect
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001074
EISBN: 978-1-62708-214-3
... in casting geometry, indicating the use of improper risering and contour design. Because nondestructive quality control inspection had not been carried out, the defect had gone undetected during the manufacturing stage. Remedial Action The site of the abrupt change in the cross section of the casting...
Abstract
A cast housing, part of a multi-shaft yoking mechanism, failed during assembly and installation of the equipment in which it was to be used. The housing, or yoke body, was cast from AISI 420 grade ferritic stainless steel. Analysis revealed that the failure was caused by the presence of shrinkage cavities, which lowered the load-bearing capability. The failure occurred at the location where there was an abrupt change in the section thickness. A redesign to provide a smooth contour at the section junction was recommended along with optimization of casting parameters to avoid shrinkage cavities.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
... Abstract In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing...
Abstract
In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing assembly revealed tensile properties well below the allowable design values. Radiology and CT evaluations revealed no casting defects. Optical microscopy revealed porosity uniformly distributed throughout the casting on the order of 0.1 mm pore diam. Scanning electron microscopy revealed elongated pores, which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting process.
Book Chapter
Failures Related to Castings
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
..., production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Failures Related to Casting
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... in casting designs that emphasize progressive solidification toward a gate or riser, tapered walls, and the avoidance of hot spots. Static properties are mostly unaffected by microporosity. Microporosity is found between dendrites and, similar to macroporosity, is caused by the inability of feed metal...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Failure Analysis of High-Level Radioactive Waste Tank Purge
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001375
EISBN: 978-1-62708-215-0
... at the outer edge of the seating surface. Gray iron is notch sensitive and can easily fail at stress risers such as sharp corners. Fig. 5 View of removed section above cavity adjacent to drain. Arrow indicates sharp machined corner and outer diameter of seating surface. Figure 6 represents...
Abstract
Three sprinkler system dry pipe valve castings (class 30 gray iron), two that had failed in service and one that had been rejected during machining because of porosity, were submitted for examination. The two failures consisted of cracks in a seating face. All three were from the same heat. Visual examination showed that the casting had cracked through a thin area in the casting sidewall. Evidence of a sharply machined corner at the fracture site was also discovered. Tensile testing and metallographic analysis revealed no metallurgical cause for the failure. It was recommended that the manufacturer work with the foundry to evaluate the criticality of core placement and to eliminate the undesired thin section.
Book Chapter
Failure Analysis of Gearbox and Clutch Shaft from a Marine Engine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
... of a metallurgical failure analysis is to determine the root cause of failure. Whether dealing with metallic or non-metallic materials, the root cause can normally be assigned to design, materials, manufacturing, and/or maintenance problems. Often, several adverse conditions also contribute to the failure process...
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Book
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter
Investigation of Fatigue-Induced Socket-Welded Joint Failures for Small-Bore Piping Used in Power Plants
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
... rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.
Book Chapter
Cracking of Inconel 800H in a Steam Methane Reformer Furnace
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
... The catalytic steam reforming process uses light to medium hydrocarbons in a certain ratio to steam in order to produce different synthesis gases (i.e. methanol, hydrogen, towngas, CO-CO 2 , oxoalcohols, or reduction gas). The heart of the steam reforming process is the primary reformer furnace. The design...
Abstract
During 5.7 years of service, dye penetrant inspection of Inconel 800H pigtail connections regularly showed cracks at weld toes. Weld repairs were not able to prevent reoccurrence but often aggravated the condition. Samples containing small, but detectable, reducer-to-pigtail cracks showed intergranular cracks originating at weld toes and filled with oxidation product, which precluded determination of the cracking mechanism. All weldments exhibited high degrees of secondary precipitates, with original fabrication welds exhibiting higher apparent levels than repair welds. SEM/EDS analysis showed base metal grain boundary precipitates to be primarily chromium carbides, but some titanium carbides were also observed. Failure was believed to result from the synergism of thermally driven tube distortion, which resulted in over-stress, and from the intergranular oxidation products and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also.
Book Chapter
Cause and Prevention of Fatigue Failures in Boiler Tubing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001569
EISBN: 978-1-62708-229-7
... mode which may be promoted by primary as well as secondary stresses. Primary stresses (pressure and weight) are usually quantified for design while the effects of secondary stress due to thermal expansion, residual stresses, vibration, etc. usually are not included in design analysis. Changes...
Abstract
This paper reviews several fatigue failures from the waterwall, superheater, and economizer portions of the boiler, their causes and how they were mitigated and monitored. Some cases required simple field modifications by cutting or welding, repair of existing controls, and/or changes in maintenance. Nondestructive inspections by visual, magnetic particle, ultrasonic, and radiographic methods for detecting and monitoring damage are discussed. These failures are presented to provide hindsight that will help others in increasing the success rate for anticipating and analyzing the remaining life of other units.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Book Chapter
Oxidation Cracking and Residual Creep Life of an Incoloy 800H Bottom Manifold in a Steam Reformer at 800 °C
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001738
EISBN: 978-1-62708-220-4
... of these units is a 1000 short ton/day ammonia plant designed by M.W.Kellogg and is situated in IJmuiden (NL). Synthesis gas for ammonia manufacture is made in a top-fired furnace by reforming a steam/methane gas mixture over a nickel catalyst. The pre-heated gas mixture enters spun cast catalyst tubes...
Abstract
During a planned shut-down in 1990 it appeared that the bottom manifold parts made of wrought Incoloy 800H had undergone diametrical expansion of up to 2% due to creep. Further, cracking at the outer diam was found. It was decided to replace these parts. Microscopical investigations showed that the cracking could not be caused by creep. It was found that the cracking was confined to a 4-mm deep coarse-grained zone (ASTM 0-1) at the outer diameter. The cracking appeared to be caused by strain-induced intergranular oxidation. When the cracks reached the fine-grained material, the oxidation-cracks stopped. To determine the residual creep life of the sound (non-cracked) bottom manifold material, iso-stress creep tests were performed. It was found that tertiary creep started at 7% strain. The time-to-rupture was greater than 100,000 h. It was concluded that the bottom manifold (and thus the furnace) could be used safely during the foreseen production period.
Book Chapter
Failure Analysis and Life Assessment of Structural Components and Equipment
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... fracture mechanism, performance factors, residual stresses, surface roughness, fatigue ( S-N ) curves, and design issues can be found in ( Ref 3 ). Relaxation is another common failure mechanism. This condition is caused by overstressing and often results from use of a grade of material...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
1