Skip Nav Destination
Close Modal
Search Results for
resistance soldering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
resistance soldering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... entire termination failure. The attachment never broke within the solder joints. Rather, the termination consistently came apart from the substrate. Pertinent Specifications A chip detail drawing ( Fig. 1 ) indicated that the chip substrate was high-purity alumina. The resistive element...
Abstract
Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. The resistor exhibited a failure mode characterized by a rise in resistance out of tolerance for the system. Representative samples from each step in the manufacturing process were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end of the termination. Transverse sections from each of the groups were examined metallographically. Consistent interfacial separation was noted. Fourier transform infrared and EDS analyses were also performed. It was concluded that low wraparound termination strength of the resistors had caused unacceptable increases in the resistance values, resulting in circuit nonperformance at inappropriate times. The low termination strength was attributed to deficient chip design for the intended materials and manufacturing process and exacerbated by the presence of polymeric contamination at the termination interface.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... between metal workpieces. For electronic manufacturing, solder alloys with lead or copper are commonly used; they have a relatively low melting point (~180 to 220 °C, or 355 to 430 °F), good mechanical properties for impact and fatigue resistance, and decent thermal and electrical conductivity ( Ref 1...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001843
EISBN: 978-1-62708-241-9
... solderability property to the lead-tin solders they are replacing. However, one property they do not possess is an inherent resistance to tin pest, since they no longer contain the pest mitigating lead. Testing of these lead-free solders has shown that they can be susceptible to tin pest [ 4 , 5 ]. So...
Abstract
The operator of an electric transit system purchased a large number of tin-plated copper connectors, putting some in service and others in reserve. Later, when some of the reserve connectors were inspected, the metal surfaces were covered with spots consisting of an ash-like powder and the plating material had separated from the substrate in many areas. Several connectors, including some that had been in service, were examined to determine what caused the change. The order stated that the connectors were to be coated with a layer of tin-bismuth (2% Bi) to guard against tin pest, a type of degradation that occurs at low temperatures. Based on the results of the investigation, which included SEM/EDS analysis, inductively coupled plasma spectroscopy, and x-ray diffraction, the metal surfaces contained less than 0.1% Bi and thus were not adequately protected against tin pest, which was confirmed as the failure mechanism in the investigation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing...
Abstract
A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing as the result of vibration and inadequate support of the hose assembly. Recommendations included changing the joint design from a cylindrical lap joint to a square-groove butt joint. Also, an additional support was recommended for the hose assembly to minimize vibration at the elbow.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089793
EISBN: 978-1-62708-235-8
... was 0.19C-0.76Mn, giving carbon equivalents (CE) of 0.34 and 0.32, respectively (CE = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15); these CE levels are indications of good weldability and resistance to weld cracking. The welds were made with a preheat of 65 °C (150 °F), with the heat applied only...
Abstract
During the final shop welding of a large armature for a direct-current motor (4475 kW, or 6000 hp), a loud bang was heard, and the welding operation stopped. When the weld was cold, nondestructive evaluation revealed a large crack adjacent to the root weld. Investigation showed the main crack had propagated parallel to the fusion boundary along the subcritical HAZ and was associated with long stringers of type II manganese sulfide (MnS) inclusions. This supported the conclusion that the weld failed by lamellar tearing as a result of the high rotational strain induced at the root of the weld caused by the weld design, weld sequence, and thermal effects. Recommendations included removing the old weldment to a depth beyond the crack and replacing this with a softer weld metal layer before making the main weld onto the softer layer.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... metals to ceramics. Procedures for brazing various materials such as cast irons, steels, stainless steels, heat-resistant alloys, aluminum alloys, titanium alloys, copper alloys, reactive and refractory metals, and carbon and graphite are described in Welding, Brazing, and Soldering , Volume 6...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001385
EISBN: 978-1-62708-215-0
...: ANSI/UL 486A Wire Connectors and Soldering Lugs for use with Copper Conductors ANSI/UL 486B Wire Connectors for Use with Aluminum Conductors ANSI/UL 486E Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors Standards 486B and 486E require that terminals intended...
Abstract
Three instances involving the failure of aluminum wiring at the service entrance to single-family homes are discussed. Arcing led to a fire which severely damaged a home in one case. In a second, the failure sequence was initiated by water intrusion into the service entrance electrical box during construction of the home. In the third, failure was caused by a marginal installation. Strict adherence to all applicable electrical codes and standards is critical in the case of aluminum wiring. Electrical components not specifically designed for aluminum must never be used with this type of wiring. All doors, panels and similar portions of electrical boxes should be secured to prevent damage to surroundings in the event of an electrical fault. If symptoms of arcing are observed, professional service should be sought. The latest designs of connectors for use with aluminum wiring are less susceptible to deviations in installation practice.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... input, and high-resolution instrument. IR systems are sensitive to surface emissivity. Rapid examination of large areas. Can be adapted to production inspections Circuit board solder joints, solar cells, heat-transfer equipment, metals, composites, concrete Sonic IR/vibro-thermography, inductive IR...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... Science and Technology , Vol 16 , Erosion , Preece C.M. , Ed., Academic Press , 1979 , p 185 – 248 8. Richman R.H. and McNaughton W.P. , A Metallurgical Approach to Improved Cavitation Erosion Resistance , J. Mater. Eng. Perform. , Vol 6 ( No. 5 ), 1997 , p 633 – 641...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001782
EISBN: 978-1-62708-241-9
... 3. Baeslack W.A. , Davis J.R. , Cross C.E. : Selection and weldability of conventional titanium alloys . In: ASM Handbook Volume 6: Welding, Brazing, and Soldering , 10th edn. , pp. 507 – 523 . ASM International ( 1993 ) 10.31399/asm.hb.v06.a0001415 Selected references...
Abstract
The head on a golf club driver developed multiple cracks during normal use. The head was a hollow shell construction made from a titanium alloy. Analysis and additional investigation revealed a progressive failure that initiated on the interior surface of the face plate along a deep, concentric groove created during a press forming operation. It was also determined that atmospheric contamination occurred during the welding of the head, causing embrittlement, which may have also contributed to the failure. Recommendations were made addressing the problems that were observed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... strength and lower resistance to wear. Thus, wear can be considerably accelerated. Corrosion-induced surface imperfections and roughening can be precursors to microcracking. The degradation of materials under corrosion attack is often accompanied with surface imperfections such as pits and grooves...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
... and use principles that will avoid the occurrence of similar failures in the future. Failure Analysis Fundamentals Four Critical Factors Many engineering issues can be simply summarized as follows: resistance (R) must be greater than demand (D), or R > D. The material property of yield...
Abstract
Welded connections are a common location for failures for many reasons, as explained in this article. This article looks at such failures from a holistic perspective. It discusses the interaction of manufacturing-related cracking and service failures and primarily deals with failures that occur in service due to stresses caused by externally applied loads. The purpose of this article is to enable a failure analyst to identify the causative factors that lead to welded connection failure and to identify the corrective actions needed to overcome such failures in the future. Additionally, the reader will learn from the mistakes of others and use principles that will avoid the occurrence of similar failures in the future. The topics covered include failure analysis fundamentals, welded connections failure analysis, welded connections and discontinuities, and fatigue. In addition, several case studies that demonstrate how a holistic approach to failure analysis is necessary are presented.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Hastelloy X nickel-base superalloy 1205 2200 1 HX (17Cr-66Ni-bal Fe) 1150 2100 1 (a) Seamless tube. (b) Electric resistance welded tube Iron oxides alone are not protective above 550 °C (1020 °F) ( Ref 5 ). Chromium, aluminum, and/or silicon assist in forming scales, which...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... , Vol 62 , 1983 17. Blodgett O.W. , Joint Design and Preparation , Welding, Brazing, and Soldering , Vol 6 , Metals Handbook ( 9th ed. ), 1983 , p 60 – 72 18. Maddox S.J. , “Scale Effect in Fatigue of Fillet-Welded Aluminum Alloys,” presented at Sixth Int. Conf...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... by soldering, brazing, or resistance welding; thus, the ability of the tube material to accept these processes is important. Oil coolers often use integral-finned (extruded) tubing. This type of tubing requires a material with a significant amount of ductility to ensure that the extended surface can...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... D 134 Casting surface entirely pitted or pock-marked Orange peel, metal mold reaction, alligator skin D 135 Grooves and roughness in the vicinity of re-entrant angles on die castings Soldering, die erosion D 140: Depressions in the casting surface D 141 Casting surface...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
.... 241 – 272 . Mc Graw Hill , Boston ( 1986 ) Selected References Selected References • Patterson R.A. , Fundamentals of Explosion Welding , Welding, Brazing, and Soldering , Vol 6 , ASM Handbook , Olson D.L. , Siewert T.A. , Liu S. , and Edwards G.R. , Ed...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... are applied by soldering, brazing, or resistance welding; thus, the ability of the tube material to accept these processes is important. Oil coolers often use integral-finned (extruded) tubing. This type of tubing requires a material with a significant amount of ductility to ensure that the extended surface...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
...-processing industries with design requirements involving corrosion resistance and elevated-temperature service. Many other engineering disciplines also have unique and special requirements for design and materials selection. In electrical engineering design, for example, the physical property...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
...-processing industries, with design requirements involving corrosion resistance and elevated-temperature service. Many other engineering disciplines also have unique and special requirements for design and materials selection. In electrical engineering design, for example, the physical property...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
1