Skip Nav Destination
Close Modal
Search Results for
reliability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 188 Search Results for
reliability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003504
EISBN: 978-1-62708-180-1
... Abstract Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article discusses the history of RCM and describes the key characteristics of an RCM process, which involves asking seven questions. The first four questions comprise a form of failure...
Abstract
Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article discusses the history of RCM and describes the key characteristics of an RCM process, which involves asking seven questions. The first four questions comprise a form of failure modes and effects analysis (FMEA), and therefore, the article explains the approach of RCM to FMEA and the failure management policies available under RCM. It reviews the ways that RCM classifies failure effects in terms of consequences and details how RCM uses failure consequences to identify the best failure management policy for each failure mode. The article concludes with a discussion on some practical issues pertaining to RCM that lie outside the scope of SAE JA1011.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006817
EISBN: 978-1-62708-329-4
... Abstract Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article begins by discussing the history of RCM and uses Society of Automotive Engineers (SAE) all-industry standard JA1011 as its model to describe the key characteristics of an RCM...
Abstract
Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article begins by discussing the history of RCM and uses Society of Automotive Engineers (SAE) all-industry standard JA1011 as its model to describe the key characteristics of an RCM process. It then expands on questions involved in RCM process, offering definitions when necessary. Next, the article describes the approach of RCM to failure modes and effects analysis (FMEA), the failure management policies available under RCM, and the criteria of RCM for deciding when a specific failure management policy is technically feasible. Then, after discussing the ways that RCM classifies failure effects in terms of consequences, it describes how RCM uses failure consequences to identify the best failure management policy for each failure mode. Next, the building blocks of RCM are put together to create a failure management program. The article ends with a discussion on some practical issues pertaining to RCM that lie outside the scope of SAE JA1011.
Image
in Failure of 17-4 PH Stainless Steel Bolts on a Titan Space Launch Vehicle
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Success of the mission depends greatly on the reliability of high-strength stainless steel fasteners.
More
Image
in Reliability-Centered Maintenance[1]
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 1 Typical reliability-centered maintenance (RCM) decision logic diagram. S, servicing; L, lubrication; OC, on-condition; HT, hard-time (comprises scheduled restoration and scheduled discard); FF, failure-finding; PM, preventive maintenance. Note: S, L, and HT are aviation-unique terms
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
Abstract
This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT transducers and two cameras. The purpose of this inspection was to verify corrosion models and to investigate the possibility of previously unidentified corrosion sites or mechanisms. The inspections included evaluation of previously identified leak sites, thickness mapping, and crack detection scans on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected indications, four of which were only partially through-wall. The cracks that were examined were found to be slightly longer than expected but still well within the flaw size criteria used to evaluate tank structural integrity.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... guidelines for target reliabilities Table 6 General guidelines for target reliabilities Consequences of failure Safety index, β o Probability of failure, P f Low (easy to fix) 2.0 2.3 × 10 −2 Moderate (general structural and mechanical components) 3.0 1.3 × 10 −3 Serious...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001025
EISBN: 978-1-62708-214-3
... that the inspection interval be reduced to one-third of its original duration for the current level of inspection reliability, or that inspection procedures be improved in order that cracks substantially smaller than 13 mm (0.5 in.) can be reliably detected. Forgings Military planes 2014-T61 UNS A92014...
Abstract
A piece of wheel flange separated from the main landing gear wheel of a C130 aircraft as it taxied on a runway. The wheel was a 2014-T61 aluminum alloy forging and had been in service nearly 20 years. Fractographic evidence indicated that the initial crack growth was caused by high-cycle fatigue. The crack grew to approximately 8 in. in length before final catastrophic fracture. Fatigue analyses accurately predicted the cyclic life demonstrated by the failed wheel since its last inspection, assuming an initial crack length of 13 to 25 mm (0.5 to 1.0 in.). It was recommended that the inspection interval be reduced to one-third of its original duration for the current level of inspection reliability, or that inspection procedures be improved in order that cracks substantially smaller than 13 mm (0.5 in.) can be reliably detected.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor. Linear damage theory ASTM A228...
Abstract
During testing of compressors under start/stop conditions, several helical suspension springs failed. The ensuing failure investigation showed that the springs failed due to fatigue. The analysis showed that during start/stop testing the springs would undergo both a lateral and axial deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover. References References 1. Fett G.A. : Characterization of Semi Float Axle Shaft Bending Failures . SAE Tech Paper...
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001302
EISBN: 978-1-62708-215-0
..., especially with respect to the accuracy of the optical pyrometer temperature readout. Also, procedures must be developed such that forging blanks that trigger the over-temperature alarm are reliably and permanently removed from the production line. Crack propagation Forging defects Mechanical...
Abstract
To forged AISI 4140 steel trailer kingpins fractured after 4 to 6 months of service. Fractographic and metallographic examination revealed that cracks were present in the spool-flange shoulder region of the defective kingpins prior to installation on the trailers. The cracks grew and coalesced during service. Consideration of the manufacturing process suggested that the cracks were the result of overheating of the kingpin blanks prior to forging, which was exacerbated during forging by deformation heating in the highly-strained region. This view was supported by results of two types of tensile tests conducted near the incipient melting temperature at the grain boundaries. All kingpins made by the supplier of the fractured ones were ultrasonically inspected and six more anticipated to fail were found. It was recommended that the heating of forging blanks be more carefully controlled, especially with respect to the accuracy of the optical pyrometer temperature readout. Also, procedures must be developed such that forging blanks that trigger the over-temperature alarm are reliably and permanently removed from the production line.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... Abstract A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... Abstract Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
... definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method...
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... Abstract The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... and effects analysis fault analysis fault equivalence probability of failure product development cycle FAILURE MODES AND EFFECTS ANALYSIS (FMEA) has evolved into a powerful tool that can be used by design engineers during all phases of product development to enhance product safety and reliability...
Abstract
This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how fault trees are used to unify the analysis of failure modes caused by design errors, manufacturing and maintenance processes, materials, and so on, and to assess the probability of failure mode occurrence. It concludes with information on some of the approaches to automating the FMEA.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
.... , Fracture Control Philosophy , Nondestructive Evaluation and Quality Control , Vol 17 , ASM Handbook , ASM International , 1989 p 666 – 673 17. Rummel W.D. , Hardy G. L. , and Cooper T. D. , Applications of NDE Reliability to Systems , Nondestructive Evaluation and Quality...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... , 2 ). However, the risks in manufacturing and reliability pertaining to solder alloys are one of the major concerns in the performance and durability of electronic products. Under some circumstances, design flaws, manufacturing defects, or unintended mechanical loading may cause solder joint failure...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... UNS S45500 Fatigue fracture Stress-corrosion cracking Mechanical springs go into a variety of aerospace systems where both efficiency and reliability are required. Typical applications range from the control of switching characteristics of miniature switches to the deployment of missile fairing...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001432
EISBN: 978-1-62708-221-1
..., full confidence is to be placed in the welded joint and its reliability must be beyond question, it is necessary to give adequate consideration to all the relevant factors, e.g., weldability of the base material, shape of the weld preparation and the welding procedure which involves choice...
Abstract
During the pre-test inspection following the stress calculation check on a 7-ton capacity Scotch derrick crane, it was noted that threads on the back stay anchorage bolts were of unusually fine pitch (11 tpi) and that the machined faces of the nuts showed irregular pits or depressions disposed in an annular manner. When sectioned, the nuts showed a surprising method of construction. The nuts for the bolts had been made by using conventional pipe couplings inserted into sleeves made from hexagonal bar and the coupling secured to the sleeve by welding at each outer face. The ends of the sleeve bore were chamfered to form a weld preparation. After welding, the faces were machined which resulted in the removal of most of the weld metal and revealed a pronounced lack of penetration. All bolts used to anchor derrick crane back stays should be designed in accordance with the recommendations of British Standard 327:1964 (Clauses 10 and 18).
1