1-20 of 81 Search Results for

reinforced polymers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... Abstract This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... Abstract Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological...
Image
Published: 01 January 2002
Fig. 18 Failure wear mechanisms in fiber-reinforced polymers sliding with fibers in different orientations. (a) N orientation; (b) parallel orientation; (c) antiparallel orientation. 1, wear failure of matrix by microplowing, microcracking, and microcutting; microplowing; 2, sliding and wear More
Image
Published: 15 May 2022
Fig. 2 Failure wear mechanisms in fiber-reinforced polymers (FRPs) sliding with fibers in different orientations: (a) N orientation, (b) P orientation, and (c) AP orientation. 1, wear failure of the matrix by microplowing, microcracking, and microcutting; 2, sliding and wear thinning of fibers More
Image
Published: 15 May 2022
Fig. 9 Wear mechanisms of continuous unidirectional fiber-reinforced polymers. N, normal; P, parallel; AP, antiparallel. Adapted from Ref 11 More
Image
Published: 01 January 2002
Fig. 22 Failure wear mechanisms of unidirectional fiber reinforced polymer composites with different orientations of fibers with respect to sliding direction against a smooth metal surface. (a) Normal aramid fibers. (b) Parallel carbon fibers. (c) Wear reduction mechanism due to hybridization More
Image
Published: 15 May 2022
Fig. 6 Schematic of the failure mechanism for the sliding wear of short fiber–reinforced polymers. Adapted from Ref 21 More
Image
Published: 15 May 2022
Fig. 10 The effect of nanoparticles on the contact mode for the short fiber–reinforced polymer composites (for better illustration purposes: fibers size is too small, and nanoparticles are too large with respect to surface roughness) More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006945
EISBN: 978-1-62708-395-9
... uorinated ethylene propylene ame ionization detector failure modes and effects analysis exible PVC ber-reinforced polymer (or plastic) Fourier transform infrared spectroscopy glass reinforced epoxy resin glass ber glass ber reinforced polymer (or plastic) gel permeation chromatography high-density...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... a significant influence on the S - N curves of polymers, and they should be considered when a component is made of polymers. Fiber type, orientation, distribution, and content are important parameters affecting fatigue properties in short-fiber (glass/carbon)-reinforced thermoplastic composites ( Ref 19...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... fiber reinforced polymer composite ft foot FTA fault-tree analysis FTIR Fourier transform infrared spectroscopy g gram G energy release rate; shear modulus GMAW gas metal arc welding GPa gigapascal GPC gel permeation chromatography GTAW gas tungsten arc weld h hour H Grossmann number hcp hexagonal close...
Image
Published: 01 January 2002
Fig. 13 (a) Indicative trends in influence of reinforcement and solid lubrication on friction and wear of high-temperature polymers. P = 1 MPa; V = 1 m/s. PEN, polyethernitrile; PEEK, polyetheretherketone; PEEKK, polyetheretherketoneketone; gr, graphite; TF, Teflon. 1, neat polymers; 2 More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... materials. The inspection of these components is substantially different from that of later fiber-reinforced material systems. It was the rapid growth of the composites industry, in both material types and applications, that spawned the need for effective nondestructive evaluation (NDE) methods...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
.... The polymer matrix is subject not only to damage mechanisms but also to interfacial and stress-cracking mechanisms. One example of interfacial failure is the loss of compressive strength in carbon-fiber-reinforced epoxy composites under hot and wet conditions. Fiber buckling is a result of interfacial failure...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... Abstract This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... to untreated filler. This improvement is due to a reduction of the stress-concentration effect of the filler. Fiber Reinforcement The addition of glass, carbon, inorganic, or high-tensile organic fibers to a polymer will have a dramatic effect on its physical properties. These properties can vary from...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
...-rate capability of the test chamber. ASTM C666, developed for assessing the resistance of concrete freezing and thawing, is also used to assess the resistance of carbon-fiber-reinforced polymer and glass-fiber-reinforced polymer wrap systems used to repair (rehabilitate) corrosion-damaged concrete...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... polymers with and without a knit line Material Reinforcement Tensile strength MPa (psi) One gate Two gates Percent retained Nylon 66 None 79.29 (11,500) 77.01 (11,170) 97 Nylon 66 10% Glass 96.39 (13,980) 90.05 (13,060) 93 Nylon 66 30% Glass 166.85 (24,200) 101.77 (14,760...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... level of crystallinity resulting from poor processing practices using this technique. Fiber reinforcement and mineral fillers are often incorporated into polymers to enhance some of their properties or to lower the cost. If a different grade of material with a lower or a higher level...