Skip Nav Destination
Close Modal
By
Abbas Razavykia, Eugenio Brusa, Cristiana Delprete, Paolo Baldissera
By
William R. Broughton, Antony S. Maxwell
By
Paul J. Gramann
Search Results for
reinforced polymers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 81
Search Results for reinforced polymers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... Abstract This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed...
Abstract
This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed for each of these types.
Book Chapter
Wear Failure of Reinforced Polymers
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... Abstract Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
Image
Failure wear mechanisms in fiber-reinforced polymers sliding with fibers in...
Available to PurchasePublished: 01 January 2002
Fig. 18 Failure wear mechanisms in fiber-reinforced polymers sliding with fibers in different orientations. (a) N orientation; (b) parallel orientation; (c) antiparallel orientation. 1, wear failure of matrix by microplowing, microcracking, and microcutting; microplowing; 2, sliding and wear
More
Image
Failure wear mechanisms in fiber-reinforced polymers (FRPs) sliding with fi...
Available to PurchasePublished: 15 May 2022
Fig. 2 Failure wear mechanisms in fiber-reinforced polymers (FRPs) sliding with fibers in different orientations: (a) N orientation, (b) P orientation, and (c) AP orientation. 1, wear failure of the matrix by microplowing, microcracking, and microcutting; 2, sliding and wear thinning of fibers
More
Image
Wear mechanisms of continuous unidirectional fiber-reinforced polymers. N, ...
Available to PurchasePublished: 15 May 2022
Fig. 9 Wear mechanisms of continuous unidirectional fiber-reinforced polymers. N, normal; P, parallel; AP, antiparallel. Adapted from Ref 11
More
Image
Failure wear mechanisms of unidirectional fiber reinforced polymer composit...
Available to PurchasePublished: 01 January 2002
Fig. 22 Failure wear mechanisms of unidirectional fiber reinforced polymer composites with different orientations of fibers with respect to sliding direction against a smooth metal surface. (a) Normal aramid fibers. (b) Parallel carbon fibers. (c) Wear reduction mechanism due to hybridization
More
Image
Schematic of the failure mechanism for the sliding wear of short fiber–rein...
Available to PurchasePublished: 15 May 2022
Fig. 6 Schematic of the failure mechanism for the sliding wear of short fiber–reinforced polymers. Adapted from Ref 21
More
Image
The effect of nanoparticles on the contact mode for the short fiber–reinfor...
Available to PurchasePublished: 15 May 2022
Fig. 10 The effect of nanoparticles on the contact mode for the short fiber–reinforced polymer composites (for better illustration purposes: fibers size is too small, and nanoparticles are too large with respect to surface roughness)
More
Book Chapter
Abbreviations—Characterization and Failure Analysis of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006945
EISBN: 978-1-62708-395-9
... uorinated ethylene propylene ame ionization detector failure modes and effects analysis exible PVC ber-reinforced polymer (or plastic) Fourier transform infrared spectroscopy glass reinforced epoxy resin glass ber glass ber reinforced polymer (or plastic) gel permeation chromatography high-density...
Abstract
This article is a compilation of abbreviations of terms, techniques, standards, compounds, and properties of materials that are relevant to the characterization and failure analysis of plastics.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... a significant influence on the S - N curves of polymers, and they should be considered when a component is made of polymers. Fiber type, orientation, distribution, and content are important parameters affecting fatigue properties in short-fiber (glass/carbon)-reinforced thermoplastic composites ( Ref 19...
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
Book
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Book Chapter
Abbreviations and Symbols: Failure Analysis and Prevention
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... fiber reinforced polymer composite ft foot FTA fault-tree analysis FTIR Fourier transform infrared spectroscopy g gram G energy release rate; shear modulus GMAW gas metal arc welding GPa gigapascal GPC gel permeation chromatography GTAW gas tungsten arc weld h hour H Grossmann number hcp hexagonal close...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... materials. The inspection of these components is substantially different from that of later fiber-reinforced material systems. It was the rapid growth of the composites industry, in both material types and applications, that spawned the need for effective nondestructive evaluation (NDE) methods...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Image
(a) Indicative trends in influence of reinforcement and solid lubrication o...
Available to PurchasePublished: 01 January 2002
Fig. 13 (a) Indicative trends in influence of reinforcement and solid lubrication on friction and wear of high-temperature polymers. P = 1 MPa; V = 1 m/s. PEN, polyethernitrile; PEEK, polyetheretherketone; PEEKK, polyetheretherketoneketone; gr, graphite; TF, Teflon. 1, neat polymers; 2
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
.... The polymer matrix is subject not only to damage mechanisms but also to interfacial and stress-cracking mechanisms. One example of interfacial failure is the loss of compressive strength in carbon-fiber-reinforced epoxy composites under hot and wet conditions. Fiber buckling is a result of interfacial failure...
Abstract
This article provides an overview of the physics and math associated with moisture-related failures in plastic components. It develops key equations, showing how they are used to analyze the causes and effects of water uptake, diffusion, and moisture concentration in polymeric materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber-resin composites.
Book Chapter
Accelerated Life Testing and Aging
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
...-rate capability of the test chamber. ASTM C666, developed for assessing the resistance of concrete freezing and thawing, is also used to assess the resistance of carbon-fiber-reinforced polymer and glass-fiber-reinforced polymer wrap systems used to repair (rehabilitate) corrosion-damaged concrete...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... Abstract This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain...
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Book Chapter
Function and Properties Factors in Plastics Processing Selection
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... to untreated filler. This improvement is due to a reduction of the stress-concentration effect of the filler. Fiber Reinforcement The addition of glass, carbon, inorganic, or high-tensile organic fibers to a polymer will have a dramatic effect on its physical properties. These properties can vary from...
Abstract
Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting processes on plastic parts and the material properties is presented. The article presents process effects on molecular orientation. It also illustrates the thinking that goes into the selection of processes for size, shape, and design factors. Finally, the article describes how various processes handle reinforcement.
Book Chapter
Navigating the Plastic Material Selection Process
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... polymers with and without a knit line Material Reinforcement Tensile strength MPa (psi) One gate Two gates Percent retained Nylon 66 None 79.29 (11,500) 77.01 (11,170) 97 Nylon 66 10% Glass 96.39 (13,980) 90.05 (13,060) 93 Nylon 66 30% Glass 166.85 (24,200) 101.77 (14,760...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... level of crystallinity resulting from poor processing practices using this technique. Fiber reinforcement and mineral fillers are often incorporated into polymers to enhance some of their properties or to lower the cost. If a different grade of material with a lower or a higher level...
Abstract
This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing and orientation. It also presents examples of failures stemming from material degradation improper use of metal inserts, weak weld lines, insufficient curing of thermosets, and inadequate mixing and impregnation in the case of thermoset composites.
1