Skip Nav Destination
Close Modal
By
Tito Luiz da Silveira, Francisco Solano Moreira, Miriam Conçeicão Garcia Chavez, Iain Le May
Search Results for
refractory selection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 62 Search Results for
refractory selection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... industry corrosion resistance gas turbine components heat exchangers material selection power generation industry process control refractories structural ceramics REFRACTORY MATERIALS are used in various industrial applications to line the interior of a multitude of vessels (mainly made...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001299
EISBN: 978-1-62708-215-0
... showing uniformly spaced beach marks around the hard irregular refractory inclusion enclosed in a nonmetallic oxide film. Fig. 1 Both portions of the failed crankshaft, showing fracture through the pin radius zone. 0.02× Fig. 2 Fractograph of the undamage fracture portion, showing...
Abstract
A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses. SEM examination revealed that the fracture origin was a subsurface defect-a hard refractory (Al2O3) inclusion—in the zone close to the pin radius. Chemical analysis showed the crankshaft material to be of inferior quality. It was recommended that magnetic particle inspection using the dc method be used to cheek for cracks during periodic maintenance overhauls.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001850
EISBN: 978-1-62708-241-9
...Specified chemical analysis (wt.%) of the refractory lining Table 1 Specified chemical analysis (wt.%) of the refractory lining Al 2 O 3 SiO 2 Fe 2 O 3 CaO ZrO 2 60 24 0.55 1.3 11 Chemical analysis (wt.%) of the blow pipe sample Table 2 Chemical analysis (wt...
Abstract
After about a year of uninterrupted service, one of the blow pipes on a blast furnace developed a bulge measuring 300 x 150 x 12 mm. The conical shaped section was removed from the furnace and examined to determine why it failed. The investigation consisted of visual inspection, chemical analysis, microstructural characterization, and mechanical property testing. The pipe was made from nonresulfurized carbon steel as specified and was lined with an alumina refractory. Visual inspection revealed cracks in the refractory lining, which corresponded with the location of the bulge. Microstructural and EDS analysis yielded evidence of overheating, revealing voids, scale, grain boundary oxidation, decarburization, and grain coarsening on the inner surface of the pipe, which also suggest the initiation of creep. Based on the information gathered during the investigation, the blow pipe was exposed to high temperatures when the liner cracked and subsequently bulged out due to creep.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046998
EISBN: 978-1-62708-232-7
... refractory cement was used in installation, and burner positioning and regulation were controlled more closely to avoid excessive heat input at the hearth level. The replacement tubes had a life well in excess of two years, which was normal for RA 333 alloy tubes in this application. Selected Reference...
Abstract
One of 14 vertical radiant tubes (RA 333 alloy) in a heat-treating furnace failed when a hole about 5 x 12.5 cm (2 x 5 in.) corroded completely through the tube wall. The tube measured 183 cm (72 in.) in length and 8.9 cm (3 in.) in OD and had a wall thickness of about 3 mm (0.120 in.). Failure occurred where the tube passed through the refractory hearth (floor) of the furnace. Although the furnace atmosphere was neutral with respect to the work, it had a carburizing potential relative to the radiant tubes. Analysis (visual inspection, 250x spectroscopic examination of specimens etched with mixed acids, metallographic examination, and chemical analysis) supported the conclusions that the premature failure of the tube by perforation at the hearth level resulted from (1) corrosion caused by sulfur contamination from the refractory cement in contact with the tube and (2) severe local overheating at the same location. Recommendations included replacing all tubes using a low sulfur refractory cement in installation and controlling burner positioning and regulation more closely to avoid excessive heat input at the hearth level.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001389
EISBN: 978-1-62708-215-0
... Fig. 1 Typical microstructure of a 50Ag–50Mo contact. The light areas are silver, the dark areas molybdenum. 380× Fig. 2 Typical microstructure of a 27Ag–73W contact. The light areas are silver, the dark areas tungsten. 380× Fig. 3 Schematic showing the silver-refractory...
Abstract
During routine quality control testing, small circuit breakers exhibited high contact resistance and, in some cases, insulation of the contacts by a surface film. The contacts were made of silver-refractory (tungsten or molybdenum) alloys. Infrared analysis revealed the film to be a corrosion layer that resulted from exposure to ammonia in a humid atmosphere. Simulation tests confirmed that ammonia was the corrodent. The ammonia originated from the phenolic molding area of the plant. It was recommended that fumes from molding areas be vented outside the plant and that assembly, storage, and calibration areas be isolated from molding areas.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001326
EISBN: 978-1-62708-215-0
... internal pressurization possible. Reference Reference 1. Kiessling R. and Lange N. , Nonmetallic Inclusions in Steels, Part II , The Metals Society , London , 1978 , p 82 – 84 Selected Reference Selected Reference • Forms of Corrosion, Failure Analysis and Prevention...
Abstract
Pressure testing of a batch of AISI type 316L stainless steel thermowells intended for use in a nuclear power-plant resulted in the identification of leakage at the tips in 20% of the parts. Radiography at the tip region of representative thermowells showed linear indications along the axes. SEM examination revealed the presence of longitudinally oriented nonmetallic inclusions that were partly retained and partly dislodged. Electron-dispersive x-ray analysis indicated that the inclusions were composed of CaO. Based on the overall chemistry of the inclusion sites, the source of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048840
EISBN: 978-1-62708-220-4
... had a type 304 stainless steel shroud around the catalyst bed as protection against the overheating that was possible if the gas bypassed the bed through the refractory material. The failure was observed to have begun at the toe of the shroud-support ring weld. The ring was found to have a number...
Abstract
A spherical carbon steel fixed-catalyst bed reactor, fabricated from French steel A42C-3S, approximately equivalent to ASTM A201 grade B, failed after 20 years of service while in a standby condition. The unit was found to contain primarily hydrogen at the time of failure. The vessel had a type 304 stainless steel shroud around the catalyst bed as protection against the overheating that was possible if the gas bypassed the bed through the refractory material. The failure was observed to have begun at the toe of the shroud-support ring weld. The ring was found to have a number of small cracks at the root of the weld. The cleavage mode of fracture was confirmed by SEM. The presence of extensive secondary cracking and twinning (Neumann bands) where the fracture followed the line of the shroud-support ring was revealed by metallography. It was revealed by refinery maintenance records that the ring had been removed for hydrotest and welded without any postweld heat treatment. The final cause of failure was concluded to be cracking that developed during the installation of the new shroud ring. Stress-relief heat treatments were recommended to be performed to reduce residual-stress levels after welding.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001249
EISBN: 978-1-62708-236-5
... Abstract The flanged bearing bush carrying the drive shaft of a feed pump suddenly fractured after about two years of service. The chemical composition was normal for high chromium ledeburitic cast steel, which was corrosion and wear resistant as well as refractory. For unknown reasons...
Abstract
The flanged bearing bush carrying the drive shaft of a feed pump suddenly fractured after about two years of service. The chemical composition was normal for high chromium ledeburitic cast steel, which was corrosion and wear resistant as well as refractory. For unknown reasons the rotating shaft came into direct contact with the flange. Mechanical friction caused a rise in temperature on both contact surfaces. This mutual contact lasted long enough for the temperature in the contact zone to exceed 1200 deg C, at which the flange material became softened or molten. As a result, considerable structural changes took place on the inner wall of the flange. Thermal stresses and excessive mechanical loads due to smearing of the flange material then led to fracture of the flange.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001599
EISBN: 978-1-62708-236-5
... radioactive waste streams. 1 During the testing program, the melter was used to evaluate vitrification of various feed chemistries from across the DOE complex, processing parameters, and melter design/materials of construction such as refractory materials and drain valves. The walls of the melter chamber...
Abstract
Failure of a pilot scale test melter resulted from severe overheating of an Inconel 690 (690) jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading. Metallurgical evaluation revealed the presence of an alloy containing nickel and molybdenum in several ingots found on the bottom of the melter and on a drip which had solidified on the electrode sheath. This indicates that a major portion of the electrode assembly was exposed to a temperature of at least 1317 deg C, the nickel/molybdenum eutectic temperature. Small regions on the end of the 690 sheath showed evidence of melting, indicating that this localized region exceeded 1345 deg C, the melting point of 690. In addition to nickel, antimony was found on the grain boundaries of the molybdenum electrode. This also contributed to the failure of the electrode. The source of the antimony was not identified but is believed to have originated from the feed material. Metallurgical evaluation also revealed that nickel had attacked the grain boundaries of the molybdenum/tungsten drain valve. This component did not fail in service; however, intergranular attack led to degradation of the mechanical properties, resulting in the fracture of the drain valve tip during disassembly. Antimony was not observed on this component.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001477
EISBN: 978-1-62708-229-7
..., hydroxides, nitrates etc. can develop multiple cracking not unlike the form seen in the present example. Samples of the deposit taken from various locations, were analysed with this object in view. Since the deposit was of similar colour to the refractories with which the casing for the drum was lined...
Abstract
During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place. Prior to the test, cracking was present already, extending up to 90% of the wall thickness. Analyses of brownish deposit material did not reveal the presence of any substances likely to cause stress-corrosion cracking of a Ni-Cu-Mo low-alloy steel.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
...Material of construction of selected gasifier components Table 1 Material of construction of selected gasifier components Item Material of construction Gasifier vessel shell wall 4–7/16-in. thick, 1¼ Cr–½ Mo steel (ASTM SA-387 Grade 11, Class 2) steel with interior Type 316...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... have also reduced the corrosion rate of various alloys by chlorides in a simulated waste incinerator environment ( Ref 38 ). Hydrogen Interactions Steam may decompose on metal surfaces at elevated temperatures to form hydrogen and oxygen. Selected applications may be able to produce atomic...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001108
EISBN: 978-1-62708-214-3
..., Imperial Chemical Industries , Cleveland, U.K. , Oct 1986 , p 405 – 414 . 2. Metals Handbook , 9th ed. , Vol 3 , Properties and Selection: Stainless Steels, Tool Materials and Special Purpose Metals , American Society for Metals , 1980 , p 214 . Selected References Selected...
Abstract
The curved parts of exit pigtails made of wrought Incoloy 800H tubing used in steam reforming furnaces failed by performance after a period of service shorter than that predicted by the designers. Examination of a set of tubes consisting of both curved (perforated) and straight parts revealed that the cracks initiated at the outer surface by a combined mechanism of creep and intergranular embrittlement. A smaller grain size resulting from cold bending fabrication procedures for the curved parts was responsible for accelerating the embrittlement. It was recommended that hot bending be used for fabrication of the curved parts. A change of alloy to a low-alloy chromium-molybdenum allay to protect against heat was also suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001615
EISBN: 978-1-62708-235-8
... and originate almost exclusively from foreign matter, such as refractory linings, that is occluded in the metal while it is molten or being cast, and (2) those inclusions that form in the metal because of a change in temperature or composition. This second category of nonmetallic inclusions, including oxides...
Abstract
Carbon steel axle forgings were rejected due to internal cracks observed during final machining. To determine the cause of the cracks, the preforms of the forging were analyzed in detail at each stage of the forging. The analysis revealed a large central burst in the intermediate stage of the forging preform, which subsequently increased in the final stage. A high upset strain during forging, especially in the final stage, accentuated the center burst by high lateral flow of the metal. It was concluded that the center burst of the axle forging resulted from a high concentration of nonmetallic inclusions in the central portion of the raw bar stock rather than the usual problem of improper forging temperature. Strict control over the inclusion content in the raw material by changing the vendor eliminated the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001712
EISBN: 978-1-62708-234-1
... Abstract A failure analysis was conducted in late 1996 on two rolls that had been used in the production of iron and steel powder. The rolls had elongated over their length such that the roll trunnions had impacted with the furnace wall refractory. The result was distortion and bowing...
Abstract
A failure analysis was conducted in late 1996 on two rolls that had been used in the production of iron and steel powder. The rolls had elongated over their length such that the roll trunnions had impacted with the furnace wall refractory. The result was distortion and bowing of the roll bodies which necessitated their removal from service. The initial analysis found large quantities of nitrogen had been absorbed by the roll shell. Further research indicated nitrogen pickup accounted for 3% volumetric growth for every 1% by weight nitrogen absorption. This expansion was sufficient to account for the dimensional change observed in the failed rolls. This paper details the failure analysis and resulting research it inspired. It also provides recommendations for cast material choice in highly nitriding atmospheres.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
... from a high alloy steel with the trade name “Supertherm”, and the reformer tubes are centrifugally cast from HK 40 steel. The manifold is made from a seamless tube of Incoloy 800H, as shown in Figure 1 . The manifold, located within the furnace, is protected externally by a refractory coating...
Abstract
The failure of a reformer tube furnace manifold has been examined using metallography. It has been shown that the cause of failure was thermal fatigue; the damage was characterized by the presence of voids produced by creep mechanisms operating during the high temperature cycle under high local stress. The study indicates that standard metallographic procedures can be used to identify failure modes in high temperature petrochemical plants.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
...: for example, inhomogeneous grain size; shear bands and locally weakened structures; cold shuts, folds, and laps; flow-through defects and improper grain flow Poor process control, materials selection, and use problems: may result in underfill, part distortion, and poor dimensional control; tool overload...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... Abstract Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... Abstract Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
1