Skip Nav Destination
Close Modal
By
Anthony J. Koprowski
By
P.C. Chan, J.C. Thornley
By
Iván Uribe Pérez, Tito Luiz da Silveira, Tito Fernando da Silveira, Heloisa Cunha Furtado
By
Scott R. Gertler
By
Poorwa Gore, M. Sujata, S.K. Bhaumik
By
K.M. Rajan, K. Narasimhan
By
Z.X. Liu, H.C. Gu
By
George M. Goodrich, Richard B Gundlach, Robert B. Tuttle, Charles V. White
Search Results for
refinement process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 104
Search Results for refinement process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Cracking on the Parting Line of Closed-Die Forgings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001270
EISBN: 978-1-62708-215-0
... on. All of these conditions can produce cracks that open during subsequent thermal processing. The occurrence of cracks was most prevalent in material that was vanadium grain refined with a vanadium content of less than 0.06%. Remedial Action When parting line separation occurs, the forging process...
Abstract
An investigation was conducted to determine the factors responsible for the occasional formation of cracks on the parting lines of medium plain carbon and low-alloy medium-carbon steel forgings. The cracks were present on as-forged parts and grew during heat treatment. Examination revealed that areas near the parting line exhibited a large grain structure not present in the forged stock. High-temperature scale was also found in the cracks. It was concluded that the cracks were caused by material being folded over the parting line. The folding occurred because of a mismatch in the forgings and from material flow during trimming and/or material flow during forging.
Image
Relationship between austenitization processing parameters and grain size f...
Available to PurchasePublished: 01 January 2002
Fig. 83 Relationship between austenitization processing parameters and grain size for a grain-refined and non-grain-refined AISI 1060 steel. (a) Effect of austenitization temperature and 2 h soaking time. (b) Effect of austenitizing time. Source: Ref 30
More
Book Chapter
Use of Failure Analysis Results in the Improvement of Line Pipe Steels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0065825
EISBN: 978-1-62708-228-0
..., sulfur content, and grain refining additives, required steelmaking technology enhancements. Improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties. References References 1. Fearnehough G.D...
Abstract
A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were concentrated towards decreasing the Charpy ductile-to-brittle transition temperature to avoid brittle fracture. It was subsequently revealed that the absorbed energy on the upper shelf of the Charpy energy-temperature curve was critical for arresting a moving crack. Both fracture initiation and fracture propagation were needed be controlled. It was concluded that improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties.
Book Chapter
Failure of a Carbon Steel Galvanizing Vat
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046911
EISBN: 978-1-62708-227-3
... metal arc process using E6010 welding rod and four passes on each side; the refined microstructure of this weld is shown in Fig. 1(b) . Chemical analyses of the welds indicated that the silicon content of the manual (shielded metal arc) weld was 0.54%, whereas that of the semiautomatic (submerged arc...
Abstract
A steel galvanizing vat measuring 3 x 1.2 x 1.2 m (10 x 4 x 4 ft) and made of 19 mm thick carbon steel plate (ASTM A285, grade B)) at a shipbuilding and ship-repair facility failed after only three months of service. To verify suspected failure cause, two T joints were made in 12.5 mm thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded metal arc weld was 0.54%, whereas that of the submerged arc weld was 0.86%. After being weighed, the specimens were submerged in molten zinc for 850 h. Analysis (visual inspection, chemical analysis, 100x 2% nital-etched micrographs) supported the conclusions that the vat failed due to molten-zinc corrosion along elongated ferrite bands, possibly because silicon was dissolved in the ferrite and thus made it more susceptible to attack by the molten zinc. Recommendations included rewelding the vat using the manual shielded metal arc process with at least four passes on each side.
Image
The finite element model with and without the refined meshings around the h...
Available to Purchase
in Failure Analysis of a Cracked Gasoline Engine Cylinder Head
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 13 The finite element model with and without the refined meshings around the hole of casting process
More
Book Chapter
Failure of a Splined Shaft from a Newsprint Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001619
EISBN: 978-1-62708-225-9
... of the splines. SEM examination revealed the splined shaft failed by fretting fatigue. Fretting fatigue Paper machines Shafts (power) 4340 UNS G43400 Fretting wear Fatigue fracture Wood chips can be efficiently turned into fiber for newsprint manufacture by the process of disc refining...
Abstract
A splined shaft on a wood chip-to-fiber refiner failed during equipment start-up. The shaft broke into two pieces at a location close to the end of the splined part of the shaft. The failed component showed the classical fatigue-cracking fracture face. The shaft had a diam of approximately 140 mm (5.5 in.) in the unsplined section and was made of 4340 Ni-Cr-Mo alloy steel heat treated to a uniform hardness of HRC 31. Cracks from at least seven different origins had coalesced to produce the single large crack that resulted in failure. The origins of these cracks were on the flanks of the splines. SEM examination revealed the splined shaft failed by fretting fatigue.
Book Chapter
Graphitization in Low Alloy Steel Pressure Vessels and Piping
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... nodules demands mobility of carbon atoms available from the dissolution of pre-existing carbides having compositions of the form M x C y . As with any reaction depending on diffusion, the temperature to which the material is exposed is a determining factor in the rate of the process. In the 1950s...
Abstract
Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures. In general, the more randomly distributed the nodules, the less effect they have on structural integrity. In the cases examined, the nodules were found to be organized in planar arrays, indicating they might have an effect on material properties. Closer inspection, however, revealed that the magnitude of the effect depends on the relative orientation of the planar arrangement and principle tensile stress. For normal orientation, the effect of embrittlement tends to be most severe. Conversely, when the orientation is parallel, the nodules have little or no effect. The cases examined show that knowledge is incomplete in regard to graphitization, and the prediction of its occurrence is not yet possible.
Book Chapter
Cracking of Inconel 800H in a Steam Methane Reformer Furnace
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
... and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also. Carbide precipitation Distortion...
Abstract
During 5.7 years of service, dye penetrant inspection of Inconel 800H pigtail connections regularly showed cracks at weld toes. Weld repairs were not able to prevent reoccurrence but often aggravated the condition. Samples containing small, but detectable, reducer-to-pigtail cracks showed intergranular cracks originating at weld toes and filled with oxidation product, which precluded determination of the cracking mechanism. All weldments exhibited high degrees of secondary precipitates, with original fabrication welds exhibiting higher apparent levels than repair welds. SEM/EDS analysis showed base metal grain boundary precipitates to be primarily chromium carbides, but some titanium carbides were also observed. Failure was believed to result from the synergism of thermally driven tube distortion, which resulted in over-stress, and from the intergranular oxidation products and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001907
EISBN: 978-1-62708-217-4
... showed that the parts were machined from stock rather than forged, and the threads were cut rather than rolled. Figure 1 details the etched grain flow within the threads. A thread rolling process would have produced a grain flow that followed the contour of the threads; however, the grain flow in Fig...
Abstract
Aircraft missile launcher attachment bolts fabricated from cadmium-coated Hy-tuf steel were found broken. Subsequent analysis of the broken bolts indicated three causes of failure. First, the bolts had been carburized, which was not in conformance with the heat treating requirements. Second, macroetching showed that the bolts has been machined from stock rather than forged, and the threads cut rather than rolled. It was also determined that hydrogen-assisted stress-corrosion cracking also played a part in the failure of the high-strength bolts.
Book Chapter
Stress Corrosion Cracking of Ring Type Joint of Reactor Pipeline of a Hydrocracker Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
... the formation of polythionic acid in the process gas. ring type pipe joint fracture polythionic acid stainless steel transgranular fracture fractography creep strength 347 (austenitic wrought stainless steel) UNS S34700 321 (austenitic wrought stainless steel) UNS S32100 Introduction...
Abstract
A ring-type joint in a reactor pipeline for a hydrocracker unit had failed. Cracks were observed on the flange and the associated ring gasket during an inspection following a periodic shutdown of the unit. The components were manufactured from stabilized grades of austenitic stainless steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused the formation of polythionic acid in the process gas.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001514
EISBN: 978-1-62708-218-1
... flange. The darker and small grained microstructure is that of the original condition of the sheet metal. The lighter colored regions showing grain refining and coarse grain structure, constitute a heat affected zone. This microstructure is a consequence of thermal annealing. There is no microstructural...
Abstract
A front-wheel drive hatchback automobile was involved in a severe front end impact. Failure analysis of the automobile revealed only a single sound spot weld in each of two 66 cm (26 in.) sections of both upper and lower floor sill flanges. Consequently, upon impact, the floor pan separated from the rocker panel, buckled and rotated upward and forward. This introduced slack in the seat belts since their retractors, being anchored to the floor pan, also rotated forward. Although not contributory to the accident itself, the faulty welds were responsible in part for the severity of the injuries sustained by the driver. The faulty welds in the unit body were apparently a consequence of improper settings of parameters on a multihead electrical resistance spot welding machine. Lack of appreciation of the hazard associated with failure of this weldment may have contributed to the low frequency of their physical inspection during production. A similar case involving faulty welds in a fuel delivery truck is also discussed.
Book Chapter
An Investigation of the Development of Defects During Flow Forming of High Strength Thin Wall Steel Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... of passes necessary to achieve the final thickness are 45% and three passes, respectively. Based on the adverse effects of inclusions on the flow forming process, it is recommended that electroslag refined (ESR) grade steel be used. These observations are in agreement with published work on flow forming. 3...
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Book Chapter
Failure Modes and Materials Performance of Railway Wheels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
... In the present investigation, the main failure modes of cartwheel, especially rim cracking, were analyzed. The mechanical properties of six kinds of wheel steels used in China with different carbon content and processing were measured. Their effect on performance of cartwheel was analyzed. 2. Materials...
Abstract
In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness, and ductility are mainly determined by the carbon content of wheel steels. The fatigue crack growth resistance is insensitive to composition and microstructure, while the fatigue crack initiation life increases with the decrease of austenite grain size and pearlite colony size. The dynamic fracture toughness, KID, is obviously lower than static fracture toughness, KIC, and has the same trend as KIC. The ratio of KID/sigma YD is the most reasonable parameter to evaluate the fracture resistance of wheel steels with different composition and yield strength. Decreasing carbon content is beneficial to the performance of cartwheel.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
.... For applications that are more sensitive to wear, analytical relationships for detailing the wear process may then be used to further refine and evaluate designs. Once hardware is built and some testing done, worn parts are available for examination, and the activities are identical to those that started...
Abstract
This article focuses on the types of activities required for the resolution of wear problems. These include examining and characterizing the tribosystem; characterizing and modeling the wear process; obtaining and evaluating wear data; and evaluating and verifying the solution.
Book Chapter
Cracking in Carbon-Molybdenum Desulfurizer Welds
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048835
EISBN: 978-1-62708-220-4
... not have been predicted by the June 1977 revision of the Nelson Curve for that material. As a result of this experience, a major refiner instituted regular ultrasonic inspections of all welds in its Fe-C-0.5Mo steel desulfurizers. Investigation During a routine examination of a naphtha desulfurizer...
Abstract
Welds in two CMo steel catalytic gas-oil desulfurizer reactors cracked under hydrogen pressure-temperature conditions that would not have been predicted by the June 1977 revision of the Nelson Curve for that material. Evidence of severe cracking was found in five weld-joint areas during examination of a naphtha desulfurizer by ultrasonic shear wave techniques. Defect indications were found in longitudinal and circumferential seam welds of the ASTM A204, grade A, steel sheet. The vessel was found to have a type 405 stainless steel liner for corrosion protection that was spot welded to the base metal and all vessel welds were found to be overlaid with type 309 stainless steel. Long longitudinal cracks in the weld metal, as well as transverse cracks were exposed after the weld overlay was ground off. A decarburized region on either side of the crack was revealed by metallurgical examination of a cross section of a longitudinal crack. It was concluded that the damage was caused by a form of hydrogen attack. Installation of a used Cr-Mo steel vessel with a type 347 stainless steel weld overlay was suggested as a corrective action.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... corrosion cracking steels INTERGRANULAR FRACTURE is the decohesion that may occur along a weakened grain boundary. Typically, the grain boundaries in polycrystalline materials are stronger than individual grains in a properly processed material below its creep-regime temperature. The grain boundaries...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... are thus the preferential region for congregation and segregation of impurities. Typically, the grain boundaries in polycrystalline materials are stronger than individual grains in a properly processed material below its creep-regime temperature. The grain boundaries are disruptions between the crystal...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... also needs a mental organizational framework that helps evaluate the significance of observations. Like the basic process of the scientific method, failure analysis is an iterative process of narrowing down the possible explanations for failure by eliminating those explanations that do not fit...
Abstract
This article describes the two critical goals in a failure investigation: damage mechanisms and damage modes. It explains the determination of primary and secondary damage mechanisms and discusses the methodology used to classify the damage mechanisms.
Book Chapter
Failures Related to Castings
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... and decarburization. Both of these definitions apply equally well to a casting or a weldment. Proper selection of casting process, alloy selection, part and mold design, solidification control, and grain refinement minimize hot cracking problems. Hot strength (resistance to cracking at solidification temperature...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
1