Skip Nav Destination
Close Modal
By
G.E. Totten, M. Narazaki, R.R. Blackwood, L.M. Jarvis
By
Marina Banuta, Isabelle Tarquini
By
G.H. Walter, R.M. Hendrickson, R.D. Zipp
By
Victor K. Champagne
By
D.K. Bhattacharya, J.B. Ghanamoorthy, Baldev Raj
By
Daniel J. Benac, Douglas B. Olson, Michael Urzendowski
Search Results for
quenching stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 265
Search Results for quenching stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Book Chapter
Brittle Fracture of Rocket-Motor Case That Originated at Delayed Quench Cracks
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
... in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching...
Abstract
A rocket-motor case made of consumable-electrode vacuum arc remelted D-6ac alloy steel failed during hydrostatic proof-pressure testing. Close visual examination, magnetic-particle inspection, and hardness tests showed cracks that appeared to have occurred after austenitizing but before tempering. Microscopic examinations of ethereal picral etched sections indicated that the cracks appeared before or during the final tempering phase of the heat treatment and that cracking had occurred while the steel was in the as-quenched condition, before its 315 deg C (600 deg F) snap temper. Chemical analysis of the cracked metal showed a slightly higher level of carbon than in the component that did not crack. X-ray diffraction studies of material from the fractured dome showed a very low level of retained austenite, and chemical analysis showed a slightly higher content of carbon in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching portion of the heat-treating cycle and tempering in the salt pot used for quenching, immediately after quenching.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Image
Stress-strain curves in tension for quenched polychlorotrifluoroethylene at...
Available to Purchase
in Creep, Stress Relaxation, and Yielding Mechanisms
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Fig. 9 Stress-strain curves in tension for quenched polychlorotrifluoroethylene at various temperatures, given in degrees Kelvin. Source: Ref 57
More
Image
Hydrogen-stress cracking of type 410 stainless steel bolts. (a) Quenched fr...
Available to Purchase
in Hydrogen-Stress Cracking of Type 410 Stainless Steel Splice Case Bolts
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 3 Hydrogen-stress cracking of type 410 stainless steel bolts. (a) Quenched from 1010 to 65 °C (1850 to 150 °F) in oil, then tempered at 535 °C (1000 °F) for 1 h. Bolt exposed in 5% H 2 SO 4 solution and 1 m/L/L Rodine inhibitor as cathode with platinum anode. Applied current: 180 mA/2
More
Image
Stress concentration factor obtained in bending a quenched and tempered ste...
Available to Purchase
in Redesign of a Forged Manual Gear-Shift Lever Mechanism to Overcome Unacceptable Fatigue Failure of Original Forging
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 2 Stress concentration factor obtained in bending a quenched and tempered steel shaft having a circular fillet
More
Book Chapter
Failures Related to Heat Treating Operations
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Book Chapter
Stress-Relief Cracking of a Welded Alloy Steel Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091009
EISBN: 978-1-62708-235-8
... Abstract A thick-walled tube that was weld fabricated for use as a pressure vessel exhibited cracks. Similar cracking was apparent at the weld toes after postweld stress relief or quench-and-temper heat treatment. The cracks were not detectable by nondestructive examination after welding...
Abstract
A thick-walled tube that was weld fabricated for use as a pressure vessel exhibited cracks. Similar cracking was apparent at the weld toes after postweld stress relief or quench-and-temper heat treatment. The cracks were not detectable by nondestructive examination after welding, immediately prior to heat treatment. Multiple-pass arc welds secured the carbon-steel flanges to the Ni-Cr-Mo-V alloy steel tubes. Investigation (visual inspection, metallographic analysis, and evaluation of the fabrication history and the analysis data) supported the conclusion that the tube failed as a result of stress-relief cracking. Very high residual stresses often result from welding thick sections of hardenable steels, even when preheating is employed. Quenched-and-tempered steels containing vanadium, as well as HSLA steels with a vanadium addition, have been shown to be susceptible to this embrittlement. Manufacturers of susceptible steels recommend use of these materials in the as-welded condition.
Book Chapter
Fatigue Failure of a Drive Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... Abstract The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
... of the flange containing one through-flange crack was examined using various methods. Results indicated that the cracks had initiated from intergranular quench cracks caused by the use of water as the quenching medium. Brittle propagation of the cracks was promoted by high residual stresses acting...
Abstract
Persistent cracking in a forged 1080 steel turntable rail in a wind tunnel test section was investigated. All cracks were oriented transverse to the axis of the rail, and some had propagated through the flange into the web. Through-flange cracks had been repair welded. A section of the flange containing one through-flange crack was examined using various methods. Results indicated that the cracks had initiated from intergranular quench cracks caused by the use of water as the quenching medium. Brittle propagation of the cracks was promoted by high residual stresses acting in conjunction with applied loads. Repair welding was discontinued to prevent the introduction of additional residual stress., Finite-element analysis was used to show that the rail could tolerate existing cracks. Periodic inspection to monitor the degree of cracking was recommended.
Book Chapter
Stress-Corrosion Cracking Failure of a Sensitized Valve Stem
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091640
EISBN: 978-1-62708-229-7
... (1600 psi). The valve stem was reported to have been solution heat treated at 1040 +/-14 deg C (1900 +/-25 deg F) for 30 min and either air quenched or oil quenched to room temperature. The stem was then reportedly aged at 550 to 595 deg C (1025 to 1100 deg F) for four hours. Investigation (visual...
Abstract
A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa (1600 psi). The valve stem was reported to have been solution heat treated at 1040 +/-14 deg C (1900 +/-25 deg F) for 30 min and either air quenched or oil quenched to room temperature. The stem was then reportedly aged at 550 to 595 deg C (1025 to 1100 deg F) for four hours. Investigation (visual inspection, 0.7x/50x images, hardness testing, reheat treatment, and metallographic examination) supported the conclusion that failure was by progressive SCC that originated at a stress concentration. Also, the solution heat treatment had been either omitted or performed at too high of a temperature, and the aging treatment had been at too low of a temperature. Recommendations included the following heat treatments: after forging, solution heat treat at 1040 deg C (1900 deg F) for one hour, then oil quench; to avoid susceptibility to SCC, age at 595 deg C (1100 deg F) for four hours, then air cool.
Book Chapter
Anomalous Fractures of Diesel Engine Bearing Cap Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... Abstract Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating...
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046210
EISBN: 978-1-62708-235-8
... AFNOR 38CD4 (similar to AISI type 4140H) and was in the quenched-and-tempered condition, with a yield strength of about 760 MPa (110 ksi). It was treated to have compressive surface stresses, and the prior-austenite grain size was ASTM 8. Analysis (visual inspection, stress analyses, and macrographs...
Abstract
Several crankshaft failures occurred in equipment that was being used in logging operations in subzero temperatures. Failure usually initiated at a cracked pin oil hole, and the failure origin was approximately 7.6 mm (0.3 in.) from the shaft surface. The holes were produced by gun drilling, giving rise to surface defects. The fracture surface was characteristic of fatigue in that it was flat, relatively shiny, and exhibited beach marks. The crack surface was at a 45 deg angle to the axis of the shaft, indicating dominant tensile stresses. The material was the French designation AFNOR 38CD4 (similar to AISI type 4140H) and was in the quenched-and-tempered condition, with a yield strength of about 760 MPa (110 ksi). It was treated to have compressive surface stresses, and the prior-austenite grain size was ASTM 8. Analysis (visual inspection, stress analyses, and macrographs) supported the conclusion that failure was caused by fatigue stress caused by surface defects in the oil holes. Recommendation includes drilling the oil holes by a technique that essentially eliminates surface defects.
Book Chapter
Fatigue Fracture of an 8617 Steel Pilot-Valve Bushing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046195
EISBN: 978-1-62708-225-9
... Abstract A pilot-valve bushing fractured after only a few hours of service. In operation, the bushing was subjected to torsional stresses with possible slight bending stresses. A slight misalignment occurred in the assembly before fracture. The bushing was made of 8617 steel and was case...
Abstract
A pilot-valve bushing fractured after only a few hours of service. In operation, the bushing was subjected to torsional stresses with possible slight bending stresses. A slight misalignment occurred in the assembly before fracture. The bushing was made of 8617 steel and was case hardened to a depth of 0.13 to 0.4 mm (0.005 to 0.015 in.) by carbonitriding. Specifications required that the part be carbonitrided, cooled, rehardened by quenching from 790 deg C (1450 deg F), then tempered at about 175 deg C (350 deg F). Visual examination, hardness testing, and metallographic and microstructural investigation supported the conclusion that the bushing fractured in fatigue because of a highly stressed case-hardened surface of unsatisfactory microstructure and subsurface nonmetallic inclusions. Cracks initiated at the highly stressed surface and propagated across the section as a result of cyclic loading. The precise cause of the unsatisfactory microstructure of the carbonitrided case could not be determined, but it was apparent that heat-treating specifications had not been closely followed. Recommendations included that inspection procedures be modified to avoid the use of steel containing nonmetallic stringer inclusions and that specifications for carbonitriding, hardening, and tempering be rigorously observed.
Book Chapter
Failed Bolts From an Army Tank Recoil Mechanism
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001379
EISBN: 978-1-62708-215-0
... or stress-corrosion cracking; ensuring that the radius at the shoulder/shank interface conforms to specifications; and replacing all existing bolts with new or reinspected inventory bolts. Cracking (fracturing) Magnetic particle testing Quench cracking Recoil mechanisms Stress corrosion cracking...
Abstract
The heads of two AISI 8740 steel bolts severed while being installed into an Army tank recoil mechanism. Both broke into two pieces at the head-to-shank radius and the required torque value had not been attained nor exceeded prior to the failure. A total of 69 bolts from inventory and the field were tested by magnetic particle inspection. One inventory bolt failed because of a transverse crack near the head-to-shank radius. It was deduced that either a 100% magnetic particle inspection had not been conducted during bolt manufacturing, or the crack went undetected during the original inspection. Optical and electron microscopy of the broken bolts revealed topographies and the presence of black oxide consistent with quench cracking. The two bolts failed during installation due to the presence of pre-existing quench cracks. Recommendations to prevent future failures include: ensuring that 100% magnetic particle inspections are conducted after bolts are tempered; using dull cadmium plate or an alternative to the electrode position process, such as vacuum cadmium plate or ion-plate or ion-plated aluminum, to mitigate the potential for delayed failures due to hydrogen embrittlement or stress-corrosion cracking; ensuring that the radius at the shoulder/shank interface conforms to specifications; and replacing all existing bolts with new or reinspected inventory bolts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001167
EISBN: 978-1-62708-228-0
... of the coupling, probably subsequently assisted by stress corrosion. After reaching a crack depth of 5.5 mm, rapid unstable brittle fracture occurred resulting in catastrophic failure in the marine riser. The main recommendation was to specify a quench and temper, rather than a normalising treatment...
Abstract
Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25% Mo) normalized from 9000C. Microscopic examination revealed the crack's initiation point and subsequent propagation. SEM examination of chemically stripped corrosion showed that corrosion fatigue and stress corrosion might have contributed to the initial slow crack growth. Impact tests revealed a fracture transition temperature in excess of 1000C. The sequence of events leading to failure was detailed. The main recommendation was to quench and temper existing couplings and to use a lower carbon quenched and tempered steel for new couplings.
Book Chapter
Overload Failure of a Quench-Cracked AISI 4340 Steel Threaded Rod
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
... cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded rod...
Abstract
An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root of a machined thread groove was visible on the fracture surface. Heavy oxidation at elevated temperatures was indicated as most of the surface of the flaw was black. Fine secondary cracks aligned transverse to the growth direction was revealed by scanning electron microscopy. It was established that intergranular cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded rod was thus attributed to the presence of the quench crack flaw caused by an improper machining sequence and heat treatment practice.
Book Chapter
Transgranular Stress-Corrosion Cracking Failures in AISI 304L Stainless Steel Dished Ends During Storage
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001319
EISBN: 978-1-62708-215-0
... of cleaning practices that cause long-term exposure to chlorine-containing cleaning fluid, and solution annealing of the dished ends at 1050 deg C (1920 deg F) for 1 h followed by water quenching to relieve residual stresses. Contaminants Marine environments Transgranular corrosion 304L UNS S30403...
Abstract
Several type 304L stainless steel dished ends used in the fabrication of cylindrical vessels developed extensive cracking during storage. All of the dished ends had been procured from a single manufacturer and belonged to the same batch. When examined visually, several rust marks were observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking (TGSCC). Conditions promoting the occurrence of the TGSCC included significant tensile stresses on the inside of the dished ends, the presence of surface contamination by iron due to poor handling practice using carbon steel implements, and storage in a coastal environment with an average temperature of 25 to 32 deg C (77 to 90 deg F), an average humidity ranging from 70 to 80%, and an atmospheric NaCl content ranging from 8 to 45 mg/m2 /day. Recommendations preventing further occurrence of the situation were strict avoidance of the use of carbon steel handling implements, strict avoidance of cleaning practices that cause long-term exposure to chlorine-containing cleaning fluid, and solution annealing of the dished ends at 1050 deg C (1920 deg F) for 1 h followed by water quenching to relieve residual stresses.
Book Chapter
High-Temperature Stress Relaxation Cracking and Stress Rupture Observed in a Coke Gasifier Failure
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... Abstract A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
... are developed in Hastelloy N when the alloy is solution heat treated at 1120 deg C (2050 deg F) and is either quenched in water or rapidly cooled in air. An alternative, but less suitable, material for the pot was type 347 (stabilized grade) stainless steel. After welding, the 347 should be stress relieved...
Abstract
A fused-salt electrolytic-cell pot containing a molten eutectic mixture of sodium, potassium, and lithium chlorides and operating at melt temperatures from 500 to 650 deg C (930 to 1200 deg F) exhibited excessive corrosion after two months of service. The pot was a welded cylinder with 3-mm thick type 304 stainless steel walls and was about 305 mm (12 in.) in height and diam. Analysis (visual inspection and 500x micrographs etched with CuCl2) supported the conclusions that the pot failed by intergranular corrosion because an unstabilized austenitic stainless steel containing more than 0.03% carbon had been sensitized and placed in contact in service with a corrosive medium at temperatures in the sensitizing range. Recommendations included changing material for the pot from type 304 stainless steel to Hastelloy N (70Ni-17Mo-7Cr-5Fe). Maximum corrosion resistance and ductility are developed in Hastelloy N when the alloy is solution heat treated at 1120 deg C (2050 deg F) and is either quenched in water or rapidly cooled in air. An alternative, but less suitable, material for the pot was type 347 (stabilized grade) stainless steel. After welding, the 347 should be stress relieved at 900 deg C (1650 deg F) for 2 h and rapidly cooled to minimize residual stresses.
1