Skip Nav Destination
Close Modal
Search Results for
quantitative thermal analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 101 Search Results for
quantitative thermal analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered. bulk analysis chemical analysis failure analysis microscale analysis thermal analysis CHEMICAL ANALYSIS is a critical part of any failure investigation. With the right planning and proper analytical...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... Abstract Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
... atmosphere controls for all thermal cycles prior to coating. References References 1. Levine D.J. , Metallurgical Relationships in Porous Coated F75 Alloys , Quantitative Characterization and Performance of Porous Implants for Hard Tissue , STP 953, ASTM , 1987 . 2. Metals Handbook...
Abstract
A femoral knee implant was returned to the casting vendor for analysis after exhibiting poor bond strength between the cast substrate and a sintered porous coating. Both the coating and the substrate were manufactured from a cobalt-chromium-molybdenum alloy. Metallographic analysis indicated that a decarburized layer existed on all surfaces of the casting, which prevented bonding during the sintering thermal cycle. Bead-to-bead bonding within the coating appeared sufficient, and no decarburized layer was present on the bead surfaces. It was concluded that the decarburization did not occur during the sintering thermal cycle. It was recommended that the prosthetic manufacturer investigate atmosphere controls for all thermal cycles prior to coating.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... identification, contamination, degradation, chemical contact Differential scanning calorimetry (DSC) Heat of fusion, melting point, glass transition temperature, heat capacity Material identification, level of crystallinity, aging/degradation, thermal history Thermogravimetric analysis (TGA) Weight loss...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
... roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life. Hardness Hot...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001281
EISBN: 978-1-62708-215-0
... section in Fig. 5 and 6 . Metallography revealed surface corrosive attack. The composition of the base metal was analyzed by quantitative chemical analysis. The chemical composition met the requirements for X-40, as shown in Table 1 . The as-received nozzle segments are shown in Fig. 1...
Abstract
The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result of hot corrosion caused by a combination of contaminants, cooling-hole blockage, and coating loss.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001848
EISBN: 978-1-62708-241-9
.... , Caillet N. , Bouchard P.O. : Quantitative analysis of the impact of forging operations on fatigue properties of steel components . J. Mater. Process. Technol . 177 , 202 – 205 ( 2006 ) 10.1016/j.jmatprotec.2006.04.114 2. Gagg C.R. , Lewis P.R. : Wear as a product failure...
Abstract
A forging die in a 250-ton press producing brass valves began to show signs of fatigue after a few thousand hits. By the time it reached 30,000 hits, the die was badly damaged and was submitted for analysis along with one of the last forgings produced. The investigation included visual and macroscopic inspection, metallographic and chemical analysis, SEM imaging, optical profilometry, mechanical property testing, and EDX analysis. The die was made of chromium hot-work tool steel and the forgings were made of CuZn39Pb3 heated to an initial working temperature 700 deg C. The entire surface of the die was covered with fatigue cracks and many fillets had been plastically deformed. Several other types of damage were also observed, including areas of oxidation, corrosion pits, voids, abrasive wear, die adhesion, and thermal fatigue. Fatigue cracking was the primary cause of failure with significant contributions from the other damage mechanisms.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
.... Development of the scanning electron microscope (SEM), and more recently, of powerful digital image analysis equipment, has led to significant advances in quantitative fractography. Numerous quantitative correlations between the material properties such as strength, ductility, toughness, and fatigue life...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... (or restoring force) above the T g in the rubbery region. In this case, the single-cantilever beam geometry shown in Fig. 46 will provide reliable data above the T g in the rubbery region. Thermogravimetric analysis can quantitatively measure the amount of a thermally inert filler such as glass...
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
..., viscosity average molecular weight Quasi-elastic light scattering (QELS) Macromolecular particle diameter, diffusion coefficient Particle size in dilute dispersions, molecular aggregation Differential thermal analysis (DTA) Glass transition temperatures, T g ; melt/crystallization temperatures...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001571
EISBN: 978-1-62708-229-7
... of three people hired to perform the review [ 7 ]. We concluded that the temperature estimates were reasonable and suggested that quantitative microscopy, aided by selective etching, might permit a more precise estimate of the degree of thermal exposure. Subsequently, the writer obtained the metallographic...
Abstract
The accident at Three Mile Island Unit No. 2 on 28 March 1979 was the worst nuclear accident in US history. By Jan 1990, it was possible to electrochemically machine coupons from the lower head using a specially designed tool. The specimens contained the ER308L stainless steel cladding and the A533 Grade B plate material to a depth of about mid-wall. The microstructures of these specimens were compared to that of specimens cut from the Midland, Michigan reactor vessel, made from the same grade and thickness but never placed in service. These specimens were subjected to known thermal treatments between 800 and 1100 deg C for periods of 1 to 100 min. Microstructural parameters in the control specimens and in those from TMI-2 were quantified. Selective etchants were used to better discriminate desired microstructural features, particularly in the cladding. This report is a progress report on the quantification of changes in both the degree of carbide precipitation and delta ferrite content and shape in the cladding as a function of temperature and time to refine the estimates of the maximum temperatures experienced.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... Fourier transform infrared spectroscopy (FTIR) is a nondestructive microanalytical spectroscopic technique that involves the study of molecular vibrations ( Ref 2 ). The analysis results provide principally qualitative, but also limited quantitative, information regarding the composition and state...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... specification (or functions) and the underlying physical concept and preliminary layout to achieve the intended functions A detailed design stage involving both the qualitative definition of part configuration and the quantitative analysis of design parameters (e.g., dimensions, tolerances, materials...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... graph and enabling the quantitative measurement of components. Thermogravimetric analysis is useful to characterize polymers containing different amounts of additives; the thermal stability of the polymer can be obtained from the decomposition profile. There may be a residue left when inorganic fillers...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... specification (or functions) and the underlying physical concept and preliminary layout to achieve the intended functions A detailed design stage involving both the qualitative definition of part configuration and the quantitative analysis of design parameters (e.g., dimensions, tolerances, materials...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001521
EISBN: 978-1-62708-229-7
.... Bodnar for their analysis of cracks in Admiralty brass cooling tubes, which are part of a heat exchanger in a turbogenerator that provides electricity to a manufacturing plant. A mixture of non-recirculating city and “spring pit” water flows through bundles of tubes to cool the oil in which...
Abstract
Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. The presence of a tensile stress, intergranular cracks, and a corrosion product suggested the tube failures resulted from stress-corrosion cracking. The main corrosion product was cupric hydroxychloride. In addition to switching to a more corrosion-resistant alloy, extreme care should be taken in the manufacturing of the replacement tube bundles to avoid imparting any residual tensile stresses in the tubing. Analyses of city and spring-pit water were recommended also, to determine which contained the least-harmful corrosive chemicals.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... ), Feb 1983 , p 25 – 28 Google Scholar 38. Brennan W.P. , “ Characterization and Quality Control of Engineering Thermoplastics by Thermal Analysis ,” Perkin Elmer Corp. 39. “ Standard Test Method for Heats of Fusion and Crystallization of Polymers by Thermal Analysis ,” D 3417...
Abstract
This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal properties of polymer. This is followed by a section describing molecular weight determination using viscosity measurements. Next, the article discusses the use of cone and plate and parallel plate geometries in melt rheology. It then reviews the processes involved in the analysis of thermoplastic resins by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... on a DuPont 993 thermal analyzer equipped with appropriate differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) modules. Analyses performed in air at a 5 °C/min (9 °F/min) heatup Polymer candidate First significant endotherm or T g obtained on postcured film using DSC...
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
... Abstract In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness...
Abstract
In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness, and ductility are mainly determined by the carbon content of wheel steels. The fatigue crack growth resistance is insensitive to composition and microstructure, while the fatigue crack initiation life increases with the decrease of austenite grain size and pearlite colony size. The dynamic fracture toughness, KID, is obviously lower than static fracture toughness, KIC, and has the same trend as KIC. The ratio of KID/sigma YD is the most reasonable parameter to evaluate the fracture resistance of wheel steels with different composition and yield strength. Decreasing carbon content is beneficial to the performance of cartwheel.
1