Skip Nav Destination
Close Modal
Search Results for
quantitative test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 152 Search Results for
quantitative test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
... in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although...
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... of specimens of partially recrystallized 7050 Al alloy ( Ref 48 ) Fig. 19 Quantitative correlation between the ultimate tensile strength and the area percentage of voids on the corresponding fracture surfaces of high-pressure die-cast AM60 magnesium alloy specimens having the same dendrite arm...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001136
EISBN: 978-1-62708-229-7
... amplitude derived from quantitative fractographic studies, to give values in excess of 160 to 170 MPa. Discussion and Additional Tests The evidence of the previous section indicates that, in the case of this particular fan failure, the cyclic stress amplitudes (>100 MPa) were much higher than...
Abstract
A fracture mechanics based failure analysis and life prediction of a large centrifugal fan made from low-carbon, medium-strength steel was undertaken following shortcomings in attempts to explain its fatigue life from start stop cycles alone. Measurements of the fracture toughness and flaw size at failure, coupled with quantitative SEM fractography using striation spacing methods, revealed that the cyclic stress amplitudes just prior to failure were much larger than expected, in this particular case. Subsequent improvements in fan design and fabrication have effectively alleviated the problem of slow, high cycle fatigue crack growth, at normal operating stresses in similar fans.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... on the basis of quantitative fractography results is probably closer to the mean SII. Simulation Tests Spin-pit simulation tests were conducted on fully bladed disks in vacuum. Details of the spin-pit test apparatus are given in Ref 6 . Two loading sequences (constant amplitude and variable amplitude...
Abstract
Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... in the United States for engineered metals are International Organization for Standardization (ISO), American Society for Testing and Materials (ASTM), Society of Automotive Engineers (SAE), Aerospace Materials Specifications (AMS), American Iron and Steel Institute (AISI), and military standards (MIL), which...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... Abstract Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001367
EISBN: 978-1-62708-215-0
... were undertaken to determine the mode of cracking. Visual Examination of General Physical Features The second-stage impeller was examined and magnetic particle tested at a local machine shop. The eye, vane tip, and the stress pattern cracks on the outside surface of the backing plate were marked...
Abstract
Cracking was discovered in an in-service, second-stage turbine impeller during a downtime inspection. The fabricated 4300 series low-alloy steel impeller was used in a compressor in an industrial petrochemical plant. It was also reported that a process upset had allowed a 10% NaOH solution to be ingested by the unit. Routine magnetic particle inspection revealed numerous cracks in the hub area and vane tips of the second-stage impeller Additionally, the outside surface of the backing plate showed a cyclic pattern of cracks. An overview of a conventional, systematic metallurgical approach to failure analysis to confirm that the cracking was caused by a caustic stress-corrosion cracking mechanism is presented.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... polymers (polyvinylidene fluoride or perfluoroalkoxy alkane), by the qualitative detection of either chlorine or fluorine. Analysis for material identification is useful for a preliminary determination before quantitative analysis is done, or it may be the only analysis possible when destructive testing...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001365
EISBN: 978-1-62708-215-0
... much of its surface. Fig. 1 As-received main boiler feed pump impeller Testing Procedure and Results Surface Examination Visual The impeller surfaces were examined using a stereomicroscope at magnifications from 7 to 67.5×. Apparent cracking was observed on many areas...
Abstract
An investigation was conducted to determine the cause of numerous cracks and other defects on the surface of a cast ASTM A743 grade CA-15 stainless steel main boiler feed pump impeller. The surface was examined using a stereomicroscope, and macrofractography was conducted on several cross sections removed from the impeller body. Areas that appeared to have the most severe surface damage were sectioned, fractured open, and examined using SEM. The chemistry of the impeller and an apparent repair weld were also analyzed. The examination indicated that the cracks were shrinkage voids from the original casting process. Surface repair welds had been used to fill in or cover over larger shrinkage cavities. It was recommended that more stringent visual and nondestructive examination criteria be established for the castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001605
EISBN: 978-1-62708-217-4
... position, topology, and details of interactions with microstructural features. The aim of this investigation was to use quantitative fractography as a tool to extract information, including striation spacing and size of the stretched zone, in order to make a direct correlation with fracture mechanic...
Abstract
After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation and origin position, topology, and details of interactions with microstructural features. The aim of this investigation was to use quantitative fractography as a tool to extract information, including striation spacing and size of the stretched zone, in order to make a direct correlation with fracture mechanic concepts. As the crack propagated, striations were created on the fracture surface as a result of service-induced load changes. The size of the striations were measured to estimate crack propagation rate. Remaining lifetime estimates were also made. The dimensions of plastically stretched zones found at the tips of the cracks were evaluated using electron micrograph stereo image pairs to characterize local fracture toughness. To complete the failure analysis, nondestructive evaluation, metallographic examination, and chemical investigations were carried out. No secondary cracks could be found. Most of the broken parts showed that the microstructure, the hardness, and the chemical composition of the Al-alloy were within the specification, but some of the cracked parts were manufactured using a different material than that specified.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
... to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure...
Abstract
Radial cracking occurred adjacent to 11 vanes in a 19-vane impeller operating in a chemical plant environment. The impeller vanes were fillet welded to both the disk and the cover Cracks were next to the fillet welds and near the cover outer diameter They generally did not extend to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure was attributed to stress-corrosion cracking caused by a corrosive atmosphere.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
.... It causes equipment to fail because of perforation with only a small percent weight loss of the entire structure. It is difficult to detect pits because of their small size and because the pits are often covered with corrosion products. It is difficult to measure quantitatively and compare the extent...
Abstract
The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source. The storage ring vacuum chamber is fabricated from 6061 extruded aluminum. Water connections to the vacuum chambers that were fabricated from 3003 aluminum had developed water leaks, which were subsequently remedied after considerable investigations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
... and 500× magnifications, respectively. To observe the microstructures of the case and core regions, the polished samples were etched in 3% nital (3 ml HNO 3 in 97 ml ethanol) and observed in a light microscope at 1000× magnification. For corroborating phase identity, Vickers microhardness tests were...
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001120
EISBN: 978-1-62708-214-3
... Abstract A segment from a premium-quality H13 tool steel die for die casting of aluminum failed after only 700 shots. The segment was subjected to visual, macroscopic, hardness, and metallographic testing. The investigation revealed that failure occurred as a result of fatigue at an electrical...
Abstract
A segment from a premium-quality H13 tool steel die for die casting of aluminum failed after only 700 shots. The segment was subjected to visual, macroscopic, hardness, and metallographic testing. The investigation revealed that failure occurred as a result of fatigue at an electrical-discharge-machined surface where the resulting rehardened layer had not been removed. This rehardened layer had cracked, providing a source for fatigue initiation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001474
EISBN: 978-1-62708-224-2
...° to give a partially crystalline fracture. A further notched piece, broken in a vice by means of hammer blows, gave a similar result. The latter tests indicated that the material was notch-brittle and, in order to provide a quantitative assessment of this aspect, Charpy test pieces were prepared...
Abstract
A mild steel hook that was part of the auxiliary hoist of an electric overhead crane used in a foundry was of the shank type and the rated safe working load was 15 tons. Failure took place in a wholly brittle manner, and occurred transversely through the back of the hook. From the direction in which the fracture developed, as indicated by the radial lines on its surface, it was evident that a preexisting defect served to initiate the brittle fracture. Material adjacent to the fracture was decarburized and contained numerous globules of oxide and slag. It was evident, therefore that a fissure was formed during the manufacture of the hook and had not developed in service. The failure was associated with a surface defect, and it was recommended that the other similar hooks at the establishment be crack detected and any similar discontinuities eliminated.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... properties as a function of exposure time. A major challenge is to ensure that performance testing for determination of chemical resistance (level of degradation) is based on a set of quantitatively measurable criteria, avoiding qualitative or subjective assessment. It is important to note...
Abstract
Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... is accomplished by gripping opposite ends of a test specimen within the load frame of a test machine. A tensile force is applied by the machine, resulting in the gradual elongation and eventual fracture of the test specimen. During this process, force-extension data, a quantitative measure of how the test item...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001284
EISBN: 978-1-62708-215-0
... (ASTM B94). Testing Procedure and Results Surface Examination The riser removed from stock was examined visually and using a stereomicroscope (up to 45×) to evaluate the surface of the riser at the sites where fracturing had occurred on the failed risers. Three of the broken risers had...
Abstract
Compound bow handle risers that had failed in service and during assembly along with an unassembled riser were submitted for analysis. The risers were die cast from magnesium-base alloy AM60A. Inspection of the failed risers and metallurgical investigations conducted on the stock riser revealed the presence of cold shuts at the same site in all specimens. It was recommended that all risers be thoroughly inspected and that the bow company work with their die casting shop to design a mold with acceptable filling characteristics.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001324
EISBN: 978-1-62708-215-0
...) before it was fractured open in the laboratory. Fig. 2 Secondary crack after it was fractured open in the laboratory. Testing Procedure and Results Surface Examination Scanning Electron Microscopy Fractography Both primary and secondary cracks were examined using a scanning...
Abstract
A type 430Ti stainless steel flue gas expansion joint cracked because of caustic-induced stress-corrosion cracking. Energy-dispersive X-ray spectroscope analysis of the fracture surface deposits revealed the presence of sodium and potassium—caustics in hydroxide form. Primary fracture surfaces were all similar in appearance, and a primary crack origin could not be identified. A secondary crack brought to fracture in the laboratory showed brittle, cleavage features rather than classic, tensile overload features. This suggested that the material was embrittled.
1