Skip Nav Destination
Close Modal
Search Results for
qualitative analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 119 Search Results for
qualitative analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis of a Jet Engine Gearbox Drive Gearshaft Ball Bearing
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Galvanic Corrosion Failure of Austenitic Stainless Steel Pipe Flange Assemblies
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 8 Qualitative EDS analysis of the typical clean pipe (found in the unetched transverse metallographic cross section of the used new stock pipe), showing the base metal elemental composition.
More
Image
in Galvanic Corrosion Failure of Austenitic Stainless Steel Pipe Flange Assemblies
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 9 Qualitative EDS analysis of the typical pipe corrosion products (found in the unetched transverse metallographic cross section of the used new stock pipe), identifying chlorine as the primary corrosive agent
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... for failure analysis, qualitative results are adequate, but the method can determine quantitative elemental compositions to a precision of 0.01 wt% with relative accuracies of ±5%, depending on the specific material, type of x-ray detector used, the method of data analysis employed, and, as always, the skill...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001076
EISBN: 978-1-62708-214-3
... to deposit of silver-sulfur compound. Unetched. 39×. Corrosion Morphology An energy-dispersive spectroscopy (EDS) qualitative analysis detected a large quantity of sulfur, as well as the presence of silver, in the deposit under the arrow in Fig. 7 . The results of the EDS analysis are shown...
Abstract
The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper) was sound and free of voids and foreign material. Corrosion products contained a large quantity of sulfur. The probable cause of the attack was the presence of electrical current within the system, with sulfides a possible contributing factor. Elimination of residual magnetism and grounding of the rotating system at appropriate locations were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001605
EISBN: 978-1-62708-217-4
... Abstract After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation and origin...
Abstract
After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation and origin position, topology, and details of interactions with microstructural features. The aim of this investigation was to use quantitative fractography as a tool to extract information, including striation spacing and size of the stretched zone, in order to make a direct correlation with fracture mechanic concepts. As the crack propagated, striations were created on the fracture surface as a result of service-induced load changes. The size of the striations were measured to estimate crack propagation rate. Remaining lifetime estimates were also made. The dimensions of plastically stretched zones found at the tips of the cracks were evaluated using electron micrograph stereo image pairs to characterize local fracture toughness. To complete the failure analysis, nondestructive evaluation, metallographic examination, and chemical investigations were carried out. No secondary cracks could be found. Most of the broken parts showed that the microstructure, the hardness, and the chemical composition of the Al-alloy were within the specification, but some of the cracked parts were manufactured using a different material than that specified.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048777
EISBN: 978-1-62708-229-7
..., indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain...
Abstract
A 150 cm ID boiler drum made form ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa. Brittle fractures were revealed in between two SA-106C nozzles and remainder was found to involve tearing. Short, flat segments of fracture area, indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain over 1% C, higher than the carbon content of the base metal. The cracks in the drain groove surface could have occurred after arc gouging, during subsequent stress-relieving, or during the hydrostatic test. Flame cutting is not recommended for the type of steel used in the boiler drum because it can lead to local embrittlement and stress raisers, potentially initiating major failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001012
EISBN: 978-1-62708-234-1
..., with the cracks starting on the inside surfaces of the tubes. There was no known corrosive agent in the system, and no other corrosion damage could be found. Qualitative tests and spectrographic analysis gave a positive indication for mercury. The spacing of the cracks, the branched intergranular cracking...
Abstract
An interstage radiator gas coil began leaking after only 45 days of service. The original brass coil with several aluminum fins was replaced three times but each replacement lasted less than a day. After removing the fins, leaks were found at circumferential cracks. A section of a tube was removed and split, revealing a series of cracks, evenly spaced. Crack spacing coincided with fin spacing, indicating that stresses incurred during installation of the fins promoted failure. Metallographic examination showed intergranular, branched cracking, characteristic of stress corrosion failures, with the cracks starting on the inside surfaces of the tubes. There was no known corrosive agent in the system, and no other corrosion damage could be found. Qualitative tests and spectrographic analysis gave a positive indication for mercury. The spacing of the cracks, the branched intergranular cracking, the rapid failure, and presence of mercury led to the conclusion of stress-corrosion cracking. It was impossible to remove mercury from the system so carbon steel coils were substituted for the brass ones. The carbon steel coils gave failure-free service for over nine years.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
..., the distinguishing alloying additions are low and the overlapping tensile requirements make hardness values inconclusive. Quantitative versus Qualitative Bulk Chemical Analysis When performing bulk chemical analysis, it is important to discern whether the technique being employed is considered quantitative...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
... Chemical Analysis/Identification Material and Weld A qualitative chemical analysis was performed on the pipe material, dealloyed area, and casting material using energy-dispersive spectroscopy (EDS). This analytical technique is capable of performing elemental analysis of microvolumes, typically...
Abstract
Various aluminum bronze valves and fittings on the essential cooling water system at a nuclear plant were found to be leaking. The leakage was limited to small-bore socket-welded components. Four specimens were examined: three castings (an ASME SB-148 CA 952 elbow from a small-bore fitting and two ASME SB-148 CA 954 valve bodies) and an entire valve assembly. The leaks were found to be in the socket-weld crevice area and had resulted from dealloying. It was recommended that the weld joint geometry be modified.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... number 4. The vertical scales represent x-ray counts per unit time, and thousands of electron volts. Fig. 8 Qualitative EDS analysis of the typical clean pipe (found in the unetched transverse metallographic cross section of the used new stock pipe), showing the base metal elemental composition...
Abstract
Catastrophic pitting corrosion occurred in type 304L stainless steel pipe flange assemblies in an industrial food processor. During regular service the pumped medium was pureed vegetables. In situ maintenance procedures included cleaning of the assemblies with a sodium hypochlorite solution. It was determined that the assemblies failed due to an austenite-martensite galvanic couple activated by a chlorine bearing electrolyte. The martensitic areas resulted from a transformation during cold-forming operations. Solution annealing after forming, revision of the design of the pipe flange assemblies to eliminate the forming operation, and removal of the source of chlorine were recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
.... Optical Emission Spectroscopy Optical emission spectroscopic (OES) methods are some of the most commonly used techniques in elemental analysis and alloy identification. The OES methods are commonly used in failure analysis for quantitative and qualitative determination of primary and trace elemental...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... in the characterization of the failures. Fourier Transform Infrared Spectroscopy Fourier transform infrared spectroscopy (FTIR) is a nondestructive microanalytical spectroscopic technique that involves the study of molecular vibrations ( Ref 2 ). The analysis results provide principally qualitative, but also...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001066
EISBN: 978-1-62708-214-3
... Material Qualitative chemical analysis of the spool piece material was performed using SEM and energy-dispersive X-ray spectroscopy (EDS). Results indicated that the alloy composition was consistent with low-carbon steel. Coatings or Surface Layers SEM/EDS analysis of the fracture surfaces...
Abstract
A flanged 100 mm (4 in.) diam low-carbon steel spool piece lined with Teflon was removed from a sulfuric acid denitrification system after cracks were observed in the painted coating. Visual and microstructural examination along with SEM fractography revealed scaled iron oxides on all opened crack surfaces. The surfaces had a faceted morphology, indicating intergranular fracture. Cracks originated at the interface between the tube and the Teflon liner Corrosion products were found caked into the intergranular region between the liner and the spool. The portion of the liner that had been exposed to the process stream was discolored. Failure of the spool was attributed to stress-corrosion cracking promoted by the presence of nitrates. Nitric acid contaminant in the sulfuric acid stream had diffused through the liner and accumulated in the annular space. Use of a liner that is more impermeable to the diffusion of ionic species was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001574
EISBN: 978-1-62708-223-5
... Handbook , Vol. 4 , ASM , Metals Park, OH 9th Ed. , 1981 . 3. Bournicon C. , Coutin R. , Grosset E. , Gashier J. , Lefebuve M. , Gapart J.C. , Tournier C. , Peyre J.P. , Cherry P. , Pavy J.C. and Tessier J.J. , Qualite Des Depots Sous...
Abstract
A CrN coated restrike punch was made of WR-95 (similar to H-11), which was fluidized bed nitrided. The coated punch was used on hot Inconel at about 1040 deg C (1900 deg F). However, a water-soluble graphite coolant was used to maintain the punch temperature at 230 deg C (450 deg F). Visual and binocular inspection at 64+ revealed presence of cracks and complete washout of coating in the working area of the failed punch. Comparison of metallographic cross sections of used and unused punches revealed a significant microstructural transformation in case of the used punch. Presence of a yellow porous layer was clearly evident between the nitrided layer and the coating, in case of the used punch. Cracks were observed to propagate from the outer surface into the bulk. Oxidation was evident along the cracks. The microstructural transformation observed in the case of the used punch was a clear indication of high temperature exposure (due to insufficient cooling) during application. The most probable cause of failure was thermal fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001236
EISBN: 978-1-62708-218-1
... examination had suffered localised damage on the cooling water side leading to serration of the edges and heavy pitting as shown in Fig. 1 . Beyond this heavily damaged zone, the external wall was coated with deposits shown by qualitative chemical analysis to consist principally of Fe 3 O 4 (magnetite...
Abstract
A cast iron cylinder liner from a diesel engine suffered localized damage on the cooling water side leading to serration of the edges and heavy pitting. This heavy damage was cavitation damage, frequently observed in diesel motor cylinders. To combat such damage the following measures are recommended in the specialist literature: reduction in piston play; reduction in the amplitude by thicker-walled linings; hard chromizing of the cooling water side; and, addition of a protective oil to the cooling water. The effect of the protective oil is presumably based on a film of oil which forms on the cylinder surface and which is not so easily scoured off during vibration. The effect of the imploding vacuum bubbles is reduced by the oil film which can renew itself from the emulsion.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001098
EISBN: 978-1-62708-214-3
... NR Molybdenum 0.20 NR Iron bal bal (a) NR, no requirement During the initial SEM examination, deposits on the fracture surfaces of screws No. 1 and 4 were examined in situ using energy-dispersive X-ray spectroscopy (EDS). EDS provides qualitative elemental analysis...
Abstract
Six ASTM A-574 steel cap screws from a hydraulic coupling failed after 3 months in service. The screws were replacements for smaller-diameter cap screws that had been installed during an outage. Six new cap screws were examined along with the failed screws. Eight fracture locations were identified—three at the head-to-shank fillet, four at the eighth thread root from the cap, and one at the sixth thread root from the cap. Fracture surfaces were examined using a stereomicroscope and SEM, and the fracture mode was shown to be transgranular. EDS on the fracture surfaces showed sulfur and chlorine in the surface deposits. The observations indicated that the screws had failed by fatigue. Insufficient preloading was considered to be the most likely cause of the fatigue cracking. It was recommended that the proper preload on the screws be verified and maintained.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001102
EISBN: 978-1-62708-214-3
... (EDS) was used to qualitatively analyze the coating on the fracture surface. The location analyzed is at “A” in Fig. 6 and proved to be cadmium. Figure 7 is an EDS graph related to this analysis. Figure 6 also shows that the substrate was primarily intergranular, consistent with liquid metal...
Abstract
Four cadmium-plated ASTM A193 grade B studs from a steam line connector associated with a power turbine failed unexpectedly in a nil-ductility manner. Fracture surfaces were covered with a light-colored, lustrous deposit. Optical microscope, SEM, and EDS analyses were conducted on sections from one of the studs and revealed that the coating on the fracture surface was cadmium. The fracture had multiple origins, and secondary cracks also contained cadmium. The fracture topography was intergranular. The failures were attributed to liquid metal embrittlement caused by the presence of a cadmium plating and operating temperatures at approximately the melting point of cadmium. It was recommended that components exposed to the cadmium be replaced.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001107
EISBN: 978-1-62708-214-3
... likely the result of inadequate annealing after cold rolling. This higher-energy structure would favor accelerated attack. Fig. 5 Micrograph of unaffected areas, showing the composite grain structure. Etched with glyceregia. 32×. Chemical Analysis Material Qualitative chemical...
Abstract
A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface, along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis showed that the carbides were primarily chromium based (Cr 23 C 7 and Cr 7 C 3 ). The sooty substance was identified as graphite. Wasted areas were ferromagnetic and the degree of ferromagnetism was directly related to the degree of wastage. Three actions were recommended: (1) inspection of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... Abstract Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism...
Abstract
Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism was ductile overload and that the mechanical properties of the bolts were consistent with exemplar bolts that had been supplied. After eliminating other sources of excessive load application, the most probable cause of failure was ascribed to variances between the frictional characteristics of the bolt at the time of re-torque and at the time of initial torque application several years earlier.
1