1-20 of 90 Search Results for

pure plastic bending

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090947
EISBN: 978-1-62708-225-9
... that the fracture occurred via brittle overload, which was predominantly intergranular. The amount of bending evidence and the directionality of the core overload fracture features suggest that the applied stresses were not purely axial, as would be anticipated in this application. The level of retained austenite...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001452
EISBN: 978-1-62708-232-7
... the segregated inner core zone and the relatively pure iron rim is clearly shown. Microscopical examination showed that the steel was in the fully spheroidised condition. indicating that it had been given a subcritical anneal at 650–700°C in order to put it in its softest condition prior to cold bending...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... would not cold work the pipe outer bends enough to form martensitic areas. The austenite-ferrite microstructurally induced galvanic corrosion because of the unique joint design. The weld zones were completely encapsulated in plastic, molded to provide a gasket surface. The undesirable chlorine...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... In a completely reversed cycle ( S min = − S max ), the mean stress is 0; in a pure tension pulsating load, the mean stress is S m = S a ; and in a pure compressive load, the mean stress is S m = − S a . The stress ratio is the algebraic ratio of two specified stress values in a stress cycle. Two...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided. crack-growth simulation elastic-plastic fracture...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... concepts. bending brittle fracture compression failure deformation ductile crack nucleation ductile fracture ductility fractography manufacturing imperfections metals microvoid coalescence notched specimen plastic flow root cause failure analysis single-crystal cleavage models specimen...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... recent results discussed subsequently ( Ref 9 ) suggest a difference in the appearance of cleavage fracture initiated by “elastic” stress fields in nondeformed material (pure cleavage) versus cleavage fracture in material plastically deformed in the yield zone in front of a macroscale crack...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... site for crack nucleation. Nucleation at a grain boundary appears to be purely a geometrical effect related to plastic incompatibility, whereas nucleation at a twin boundary is associated with active slip on crystallographic planes immediately adjacent and parallel to the twin boundary. The above...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
.... 10 Contours of Von mises’ stresses of a section of the wire rope in pure tension Next, considering the bending due to the presence of the sheave, the bending stress can be approximated from the following equation [ 14 ]: (Eq 2) σ b max = E d wire D where E...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... frequently occurs near free surfaces, because nominal stresses are often higher there (e.g., bending and torsion). Geometric variations at surfaces can locally elevate stresses and strains, and processes of damage accumulation (described subsequently for pure unflawed materials) are also favored at surfaces...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... plastic deformation at nominal stresses below yield. Initiation frequently occurs near free surfaces, as nominal stresses are often higher there (e.g., bending). Geometric variations at surfaces can locally elevate stresses and strains, and processes of damage accumulation (described below for pure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... Thermal fatigue fracture Crevice corrosion In recent years, there has been a growing application of reactive metals in the processing equipment in chemical, petroleum, and power industries. Commercially pure titanium with desirable engineering properties as well as excellent corrosion resistance...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
..., subsurface-initiated failures, and subcase fatigue Cracking Hardening cracks, grinding damage, rim and web cracks, case/core separation, and fatigue cracks Fracture Brittle fracture, ductile fracture, mixed-mode fracture tooth shear, and fracture after plastic deformation Bending fatigue Low...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... of slight bending will cause it to be off-center. A brittle material in pure torsion will again fracture perpendicular to the tensile-stress component, which is now 45° to the shaft axis. The resulting fracture surfaces usually have the shape of a spiral. The elastic-stress distribution in pure...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... Abstract There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... plane, perpendicular to the axis of the shaft. In pure torsion, the final-fracture region is at the center of the shaft; the presence of slight bending will cause it to be off-center. A brittle material in pure torsion will again fracture perpendicular to the tensile-stress component, which is now...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001459
EISBN: 978-1-62708-234-1
... Abstract Fundamentals of fatigue failure are outlined. Addressed are fatigue crack characteristics, basic crack types, unidirectional bending, alternate bending, rotary bending, torsion, direct stress, and combined stress. Stress cycle, endurance limits, under and overstressing, stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... was somewhat notch brittle (although ductile under the usual tensile test and unnotched bend test), but in all three cases it became embrittled locally at regions where it had been plastically deformed by shearing or bending. With two of the failures it would appear that the subsequent heating imparted...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... prosthesis; metal against metal (G.E.U.P.A.R.). (f) Sliding knee joint prosthesis; metal against plastic (Geomedic). (g) Total shoulder joint prosthesis; metal against plastic (St. Georg). (h) Total finger joint prosthesis with metal and plastic components (St. Georg). (i) Total elbow joint prosthesis; metal...