Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
property characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 385 Search Results for
property characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090433
EISBN: 978-1-62708-218-1
... representing an older lot, which exhibited satisfactory performance properties, were also available for reference purposes. The clips were specified to be injection molded from an impact-modified grade of nylon 6/6. However, the part drawing did not indicate a specific resin. Investigation included visual...
Abstract
A production lot of plastic wire clips was failing after limited service. The failures were characterized by excessive relaxation of the clips, such that the corresponding wires were no longer adequately secured in the parts. No catastrophic failures had been encountered. Parts representing an older lot, which exhibited satisfactory performance properties, were also available for reference purposes. The clips were specified to be injection molded from an impact-modified grade of nylon 6/6. However, the part drawing did not indicate a specific resin. Investigation included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. The spectrum representing the reference parts showed a relatively higher level of a hydrocarbon-based impact modifier, while the results obtained on the failed parts showed the presence of an acrylic-based modifier. Also, the reference clip thermogram showed a melting transition attributed to a hydrocarbon-based impact modifier. The conclusion was that the control and failed clips had been produced from two distinctly different resins. It appeared that the material used to produce the failed clips had different viscoelastic properties, which produced a greater predisposition for stress relaxation.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... characteristics include microstructure, mechanical properties, surface finish, dimensions, dimensional tolerance, residual-stress magnitude and distribution, corrosion resistance, and so on. One interesting example that has been documented is the formation of Laves phase in the nickel-base superalloy Inconel 718...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090424
EISBN: 978-1-62708-222-8
... Abstract A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual...
Abstract
A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual inspection and analysis using micro-FTIR in the ATR mode) revealed the spectrum showed changes in the relative intensities of several bands, as compared to the results representing the base material. A spectral subtraction was performed, and the results produced a good match with diphenyl carbonate, which is a common breakdown product produced during the decomposition of polycarbonate. The conclusion was that the most likely cause of the molecular degradation was improper drying and/or exposure to excessive heat during the injection molding process that in turn caused the material degradation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... was ductile overload and that the mechanical properties of the bolts were consistent with exemplar bolts that had been supplied. After eliminating other sources of excessive load application, the most probable cause of failure was ascribed to variances between the frictional characteristics of the bolt...
Abstract
Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism was ductile overload and that the mechanical properties of the bolts were consistent with exemplar bolts that had been supplied. After eliminating other sources of excessive load application, the most probable cause of failure was ascribed to variances between the frictional characteristics of the bolt at the time of re-torque and at the time of initial torque application several years earlier.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
... Abstract A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions...
Abstract
A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched-and-tempered microstructure contained solidification shrinkage, inherently poor ductility, and type II Mn-S inclusions that are known to reduce ductility. The macro and microscale fracture features confirmed that the casting was likely in low-temperature service at the time of failure. The composition and mechanical properties of the casting did not satisfy the design requirements. Recommendations included exerting better composition control, primarily with regard to melting, deoxidation, and nitrogen control. Better deoxidation practice was recommended to generate the more desirable Mn-S inclusion morphology, and reevaluation of the casting design was suggested to minimize shrinkage.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0090436
EISBN: 978-1-62708-233-4
... Abstract Molded plastic couplings used in an industrial application exhibited abnormally brittle properties, as compared to previously produced components. The couplings were specified to be molded from a custom-compounded glass-filled nylon 6/12 resin. An inspection of the molding resin used...
Abstract
Molded plastic couplings used in an industrial application exhibited abnormally brittle properties, as compared to previously produced components. The couplings were specified to be molded from a custom-compounded glass-filled nylon 6/12 resin. An inspection of the molding resin used to produce the discrepant parts revealed that the pellets were of two general types, neither of which matched the pellets from a retained resin lot. Investigation included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. The thermograms supported the conclusion that the brittle couplings contained a significant level of contamination, polypropylene and nylon 6/6. The source of the polypropylene was likely the purging compound used to clean the compounding extruder. The origin of the nylon 6/6 resin was unknown but may represent a previously compounded resin.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001354
EISBN: 978-1-62708-215-0
... 3.54 2.50 (min) Chromium 0.39 0.75 (max) Molybdenum 0.45 0.25 (min) Vanadium 0.11 0.03 (min) Copper 0.10 … Iron bal bal Results of tensile testing Table 2 Results of tensile testing Property Sample 1 Sample 2 Specified Tensile strength, MPa (ksi...
Abstract
An A-470 steel rotor disk was removed from the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks, primarily intergranular were found on the inlet and outlet faces along prior-austenite grain boundaries. The cracks initiated at the surface and propagated inward. Multiple crack branching was observed. Many of the cracks were filled with iron oxide. X-ray photoelectron spectroscopy indicated the presence of sodium on crack surfaces, which is indicative of NaOH-induced stress-corrosion cracking. Failure was attributed to superheater problems that resulted in caustic carryover from the boiler. Two options for disk repair, installing a shrink-fit disk or applying weld buildup, were recommended. Weld repair was chosen, and the rotor was returned to service; it has performed for more than 1 year without further incident.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... center on the techniques used to evaluate the composition and structure of the material. Unlike metals, polymers have a molecular structure that includes characteristics such as molecular weight, crystallinity, and orientation, and this has a significant impact on the properties of the molded article...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
.... What properties were required during service? How were properties expected to change from service exposure? How was the part inspected during service intervals? What information was found during these inspections? What material characteristics were specified for the part (e.g., composition...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
...Practical information derived from polymer analysis methods Table 1 Practical information derived from polymer analysis methods Test method Properties measured Use in polymer failure analysis Fourier transform infrared spectroscopy (FTIR) Molecular bond structure Material...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... these inspections? What material characteristics were specified for the part (e.g., composition, strength, hardness, impact, and stress-rupture properties)? What specifications, industry standards, and contracts govern these properties? What were the various ways the part could fail? The last item...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... decisions made last, sometimes literally as an afterthought. After the dimensions and property requirements were identified, the cheapest material meeting those requirements was sought. This philosophy may have been more justifiable when fewer material choices were available or when less sophistication...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006937
EISBN: 978-1-62708-395-9
..., and internal contamination must also be considered. These characteristics are a function of the material and the fabrication method. Gloss and color also are affected by the base material and measured as optical properties. References References 1. Smith W.J. , Modern Optical Engineering...
Abstract
Optical testing of plastics includes the characterization of materials and the analysis of optical components. If a material is tested for transmission, haze, yellowness, and refractive index, the knowledge of its optical properties is nearly complete. For optical components, surface irregularity, birefringence, and internal contamination must also be considered. These characteristics are a function of the material and the fabrication method. Gloss and color also are affected by the base material and measured as optical properties.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... last, sometimes literally as an afterthought. After the dimensions and property requirements were identified, the cheapest material meeting those requirements was sought. This philosophy may have been more justifiable when fewer material choices were available or when less sophistication in design...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... steels have many outstanding properties, apart from a high resistance to corrosion in many environments: they retain ductility and toughness under a range of exposure conditions, are less sensitive to embrittlement than ferritic stainless steels, and have better forming characteristics. Nevertheless...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001357
EISBN: 978-1-62708-215-0
... Ni, O, N, C, Cl, S 50 Ni, O, N, C, Cl, S 2 10 Ni, O, N, C, Cl, S 20 C, Cl, S 30 C, Cl S Physical and chemical properties of Diesel C fuel Table 2 Physical and chemical properties of Diesel C fuel Properties Luján de Cuyo La Plata Density 0.825 0.850...
Abstract
Two 20 MW turbines suffered damage to second-stage blades prematurely. The alloy was determined to be a precipitation-hardening nickel-base superalloy comparable to Udimet 500, Udimet 710, or Rene 77. Typical protective coatings were not found. Test results further showed that the fuel used was not adequate to guarantee the operating life of the blades due to excess sulfur trioxide, carbon, and sodium in the combustion gases, which caused pitting. A molten salt environmental cracking mechanism was also a factor and was enhanced by the working stresses and by the presence of silicon, vanadium, lead, and zinc. A change of fuel was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001298
EISBN: 978-1-62708-215-0
... • Forms of Corrosion , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 761 – 795 10.31399/asm.hb.v11.a0003548 Conclusions and Recommendations Most Probable Cause How Failure Could Have Been Prevented Mechanical Properties Hardness Tensile...
Abstract
A helicopter tail rotor blade spar failed in fatigue, allowing the outer section of the blade to separate in flight. The 7075-T7351 aluminum alloy blade had fiberglass pockets. The blade spar was a hollow “D” shape, and corrosion pits were present on the inner surface of the hollow spar A single corrosion pit, 0.38 mm (0.015 in.) deep, led to a fatigue failure of the spar The failure initiated on the pylon side of the blade. Dimensional analysis of the spar near the failure revealed measurements within engineering drawing tolerances. Though corrosion pitting was present, there was an absence of significant amounts of corrosion product and all of the pits were filled with corrosion-preventative primer. This indicated that the pitting occurred during spar manufacture, prior to the application of the primer The pitting resulted from multiple nickel plating and defective plating removal by acid etching. Post-plating baking operations subsequently reduced the fatigue strength of the spar.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001124
EISBN: 978-1-62708-214-3
... of the elongation grains from longitudinal to transverse at the fusion zone. Fig. 5 Metallographic cross section showing the grain flow characteristics and intergranular corrosion adjacent to fracture edge (arrow). Fig. 6 Scanning electron micrograph showing intergranular corrosion...
Abstract
Several wires in aluminum conductor cables fractured within 5 to 8 years of, service in Alaskan tundra. The cables were comprised of 19-wire strands; the wires were aluminum alloy 6201-T81. Visual and metallographic examinations of the cold-upset pressure weld joints in the wires established that the fractures were caused by fatigue loading attributable to wind/thermal factors at the joints. The grain flow at the joints was transverse to the wire axis, rendering the notches of the joints sensitive to fatigue loading. An additional contributory factor was intergranular corrosion, which assisted fatigue crack initiation/propagation. The failure was attributed to the departure of conductor quality from the requirements of ASTM B 398 and B 399, which specify that “no joints shall be made during final drawing or in the finished wire” and that the joints should not be closer than 15 m (50 ft). The failed cable did not meet either criterion. It was recommended that the replacement cable be inspected for strict compliance to ASTM requirements.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090448
EISBN: 978-1-62708-222-8
... had been degraded, producing a reduction in the molecular weight and reducing both the mechanical integrity and chemical-resistance properties of the parts. Crystallization Electrical appliances Grease Housings Injection molding Molding resins Undercrystallization Polycarbonate...
Abstract
Housings (being tested as part of a material conversion) from an electrical appliance failed during an engineering evaluation. They had been injection molded from a commercial polycarbonate/PET blend. Parts produced from the previous material, a nylon 6/6 resin, had consistently passed the testing regimen. Grease was applied liberally within the housing assembly during production. Investigation included visual inspection, 24x SEM images, micro-FTIR in the ATR mode, and analysis using DSC. No signs of material contamination were found, but the thermograms showed a crystallization of the PET resin. The grease present within the housing assembly, analyzed using micro-FTIR, was composed of a hydrocarbon-based oil, a phthalate-based oil, lithium stearate, and an amide-based additive. The conclusion was that the appliance housings failed through environmental stress cracking caused by a phthalate-based oil that was not compatible with the PC portion of the resin blend. Thus, the resin conversion was the root cause of the failures. Additionally, during the injection molding process the molded parts had been undercrystallized, reducing their mechanical strength. More importantly, the resin had been degraded, producing a reduction in the molecular weight and reducing both the mechanical integrity and chemical-resistance properties of the parts.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001289
EISBN: 978-1-62708-215-0
... of subsurface cracks Fig. 6 High-magnification optical micrograph showing intergranular cracks with characteristic manganese sulfide and oxide inclusions in the crack path of a section across the radial cracks in the heat-treated part Fig. 1 Heat-treated end frame component after cadmium...
Abstract
The repeated occurrence of random cracks in the fillet radius portion of low-alloy steel (38KhA) end frame forgings following heat treatment was investigated. Microstructural analyses were carried out on both the failed part and disks of the rolled bar from which the part was made. Subsurface cracks were found to be zigzag and discontinuous as well as intergranular in nature. A mixed mode of fracture involving ductile and brittle flat facets was observed. Micropores and rod-shaped manganese sulfide inclusions were also noted. The material had a hydrogen content of 22 ppm, and cracking was attributed to hydrogen embrittlement. Measurement of hydrogen content in the raw material prior to fabrication was recommended. Careful control of acid pickling procedures for descaling of the hot-rolled bars was also deemed necessary.
1