Skip Nav Destination
Close Modal
Search Results for
process qualification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 33 Search Results for
process qualification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001647
EISBN: 978-1-62708-235-8
... rate observed in the production test welds was inconsistent with the relative absence of porosity in the development and qualification welds. Thus, the initial inquiries into the cause of weld porosity focused on process control. Two process differences between the production and development welds were...
Abstract
An unacceptable degree of porosity was identified in several closure welds on stainless steel containers for plutonium-bearing materials. The pores developed in the weld tie-in region due to gas trapped by the weld pool during the closure process. This paper describes the efforts to trace the root cause of the porosity to the geometric conditions of the weld joint and establish corrective actions to minimize such porosity.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... Hardware by Laser Powder Bed Fusion Metallurgical Processes ,” MSFC-STD-3716, NASA, Marshall Space Flight Center , Oct 18 , 2017 40. “ Specification for Control and Qualification of Laser Powder Bed Fusion in Metals ,” MSFC-STD-3717, NASA, Marshall Space Flight Center , Oct 18 , 2017 41...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001433
EISBN: 978-1-62708-235-8
... of the heated band suggested that the weld had been made by the oxy-gas process. A lack of root fusion over most of its length was evident. Examination of the fracture faces, which were of crystalline appearance indicative of brittle behavior, indicated incomplete fusion of the weld root. Microscopic...
Abstract
On attempting to manipulate or bend a boiler tube some 22 ft. long, sudden failure occurred at what appeared to be a butt weld in the tube. Externally, the weld reinforcement had been ground flush and the entire tube surface painted. Internally, the appearance and width of the heated band suggested that the weld had been made by the oxy-gas process. A lack of root fusion over most of its length was evident. Examination of the fracture faces, which were of crystalline appearance indicative of brittle behavior, indicated incomplete fusion of the weld root. Microscopic examination showed the deposit to possess a large grain size with a low carbon content disposed as carbides along the grain boundaries, a feature which would provide an explanation of the brittle behavior. Subsequent inspection showed that this tube was one of several of the batch ordered for retubing of a boiler and which had a 2 ft. length welded to one end to make up the length.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001432
EISBN: 978-1-62708-221-1
... the appropriate qualification tests. In many instances production tests plates may be called for and it is the usual practice for the item to be finally examined by non-destructive methods and a proof carried out. To the uninitiated on the other hand, welding appears on obviously simple process...
Abstract
During the pre-test inspection following the stress calculation check on a 7-ton capacity Scotch derrick crane, it was noted that threads on the back stay anchorage bolts were of unusually fine pitch (11 tpi) and that the machined faces of the nuts showed irregular pits or depressions disposed in an annular manner. When sectioned, the nuts showed a surprising method of construction. The nuts for the bolts had been made by using conventional pipe couplings inserted into sleeves made from hexagonal bar and the coupling secured to the sleeve by welding at each outer face. The ends of the sleeve bore were chamfered to form a weld preparation. After welding, the faces were machined which resulted in the removal of most of the weld metal and revealed a pronounced lack of penetration. All bolts used to anchor derrick crane back stays should be designed in accordance with the recommendations of British Standard 327:1964 (Clauses 10 and 18).
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001431
EISBN: 978-1-62708-221-1
... reliability must be beyond question, it is necessary to give adequate consideration to all the relevant factors, e.g., weldability of the base material, shape of the weld preparation and the welding procedure which involves choice of the welding process, electrodes, size of runs, electrical parameters and pre...
Abstract
The sudden collapse of a tower crane on a building site resulted in severe injuries to the driver. Failure took place at the upper portion of the foundation or lowermost section. The mast sections were constructed from four main corner angles welded to end frames also made from angle sections which were gusseted and fitted with additional doubling plates in the corners where the jointing bolts were fitted. It was evident that the collapse was due to failure of the welds attaching the corner angles to an end frame. Many of the welds at the locations where failure occurred were of poor quality. The corner angles appeared to have been cut slightly shorter than the required dimensions. This was compensated in one case by the use of a weld build-up and in the other three by make-up pieces attached by welds of insignificant dimensions.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... of the base material, shape of the weld preparation and the welding procedure which involves choice of the welding process, electrodes, size of runs, electrical parameters and pre- or post-heat. The adequacy of the procedure is then demonstrated by a practical test involving both NDT and destructive test...
Abstract
An intermediate shaft (3 in. diam), part of a camshaft drive on a large diesel engine, broke after two weeks of service. Failure occurred at the end of the taper portion adjacent to the screwed thread. The irregular saw-tooth form of fracture was characteristic of failure from torsional fatigue. A second shaft carried as spare gear was fitted and failure took place in a similar manner in about the same period of time. Examination revealed that the tapered portion of the Fe-0.6C carbon steel shaft had been built up by welding prior to final machining. A detailed check by the engine-builder established that the manufacture of these two shafts had been subcontracted. It was ascertained that the taper portions had been machined to an incorrect angle and then subsequently built-up and remachined to the correct taper. The reduction in fatigue endurance following welding was due to heat-affected zone cracking, residual stresses, the lower fatigue strength of the weld deposited metal, and weld defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001613
EISBN: 978-1-62708-235-8
... failed during 5° bend tests required for qualification. Fig. 1 Schematic diagram of the tapped adjusting screw showing various portions The details of screw specification are as follows: Material: 16MnCr5 steel as per DIN: 17210 Composition: C-0.14-0.19%, Si-0.15-0.40%, Mn-1.0...
Abstract
The electroplated tappet adjusting screws used in diesel engines failed during initial bend testing. The analysis of the failure showed that the fracture was nucleated from the subsurface of the screw. The fracture surface was intergranular at the ID and OD region and microvoid coalescence in the center. The improper baking after electroplating of the screw led to H2-induced blistering/cracking. The high strength of the threaded region of the adjusting screw increased the failure propensity.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... Wall Crawler Procedure and Equipment Qualification Thickness Mapping Weld Inspection and Crack Detection Ultrasonic Flaw Sizing Through-Wall Bleed-Out Tank Design Inspection Personnel Field Tank Inspections Summary The technology, data, and analysis presented...
Abstract
This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT transducers and two cameras. The purpose of this inspection was to verify corrosion models and to investigate the possibility of previously unidentified corrosion sites or mechanisms. The inspections included evaluation of previously identified leak sites, thickness mapping, and crack detection scans on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected indications, four of which were only partially through-wall. The cracks that were examined were found to be slightly longer than expected but still well within the flaw size criteria used to evaluate tank structural integrity.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... to meet the needs of a new process or a new design Substitution for an existing design to improve reliability and performance To tackle the first situation, the essential qualifications for a new case are the thermal, chemical, and mechanical constraints to be met. Definition of those constraints...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
... in. The welding orientation represents a combination of geometries 11 and 12, as characterized in Ref 1 . The 3.25 in. flange was beveled to comply with American Welding Society (AWS) D1.1-00 2 requirements, and the joining was completed with multiple weld passes using the flux cored arc welding (FCAW) process...
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... a prolongation of each forging or from the prolongation from one sample forging or from a qualification forging. Mechanical properties for additive-manufacturing-processed parts are still a work in progress but, if done, are usually taken from test bars fabricated separately during the build. The question...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001145
EISBN: 978-1-62708-217-4
... of residues virtually impossible. The external surfaces of the chamber are plated with electrolyses nickel. Since the process involves dipping the chamber into the plating bath, the surfaces between the heat shields and the dome in the area around the exhaust port are also plated. Fig. 1 Cartridge...
Abstract
Cartridge-pneumatic starter systems are used on military aircraft. In the cartridge mode used for alert starts, the starter turbine is driven by hot gases produced through the controlled burning of a solid propellant cartridge within a closed chamber (the breech chamber/cartridge chamber assembly). Premature failures of steel breech chambers have been prevalent enough to cause serious concern. The breech chamber is fabricated from a 4340 Ni-Cr-Mo steel forging heat treated to a hardness in the range HRC 40 to 45. The failures have taken several forms, including fracture and unzipping of the chamber dome, burn-through of the dome, and shearing of bayonet locking lugs. Factors identified as significant in the failures are the pressure developed in the chamber and internal corrosion of the chamber in an environment that can produce stress-corrosion cracking. The interior configuration of the chamber and the stress distribution also have a bearing upon the failure modes. Several failures are reviewed to illustrate the problems.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... and is located on the helicopter as shown in Figure 1 . This figure also shows the location of the failure (indicated by arrow). The component is forged from maraging 300 steel, and after heat treatment and final machining, is cadmium coated using a vacuum deposition process. The part is subsequently painted...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
...Abstract Abstract Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
...Abstract Abstract A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... that would qualify individual lots of springs before system level testing. System level testing takes in excess of six months for qualification, whereas a spring endurance test should take only a week to complete. In determining the root cause analysis of the broken spring, a fishbone diagram...
Abstract
During testing of compressors under start/stop conditions, several helical suspension springs failed. The ensuing failure investigation showed that the springs failed due to fatigue. The analysis showed that during start/stop testing the springs would undergo both a lateral and axial deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
... in the repair process. Enhanced field fabrication methods can be expected to result in even better reliability. Experiments performed by the Japanese suggest that eliminating the axial gap makes socket-welded joints more tolerant of fatigue, however the ASME Boiler and Pressure Vessel Code, §III, requires...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
...; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis. failure analysis finite element...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.