1-20 of 522 Search Results for

process design

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
...Simulation results and estimated die life cycles Table 1 Simulation results and estimated die life cycles Varying process parameter/die design feature Max von Mises stress, σ max , MPa Max principal strain, ε max Number of billets extruded (life cycles, N f ) Other simulation...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
... Abstract The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
... of avoiding or minimizing the risk of cracks could be one or more of the following: Arrange the process design to avoid temperatures between 575 and 650 °C (1065 and 1200 °F). Select a material that has a good resistance against metal dusting and does not develop the precipitation that causes stress...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures. failure analysis failure prevention...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
... and final preparation for manufacturing. Fig. 6 Rebuilding the finished product assembly from the individual piece part files will help the design team to analyze the assembly process and find potential problems before investing in tooling. Fig. 5 The two-dimensional specification...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Fig. 1 Think thoroughly from as many perspectives as needed and always consider the four essential elements—material, process, tooling, and design—when developing the ideal conceptual design. Illustration by Caroline MacLean-Blevins. Reprinted from Ref 1 with permission by Elsevier...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
... Abstract This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... Abstract This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006942
EISBN: 978-1-62708-395-9
... Berlin Fig. 1 Typical curves related to the failure of a product design as a function of time Fig. 3 Fishbone diagram, showing the most common cause categories Abstract Failure analysis is the process used to determine the cause of a failure. There is no definitive method...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
.... This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
... Attack Munition (JDAM), the aluminum A357 housing had been redesigned and cast via the permanent mold casting process, but did not meet the design strength requirements of the previous design. The manufacturer concluded that the repeated trial-and-error design of the casting process and modification...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... to unacceptable features of a product or system that are a result of the design process. This process encompasses the original concept development, the general configuration definition, and the detail design, including selection and specification of materials and manufacturing processes. Design involves...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... Abstract This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... processes is also absolutely essential for stability and patient comfort. Unfortunately, some fixation devices are applied in locations where the structural design of the implant (its overall size, shape, and the location of holes for the attachment to bone with screws) does not always lend itself...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... dimension is defined as the major strain, with the minor strain perpendicular. The change in thickness relative to the incoming sheet is the thickness strain. Forming strains primarily are a function of part and process design, with sheet metal properties having only a small influence. It is possible...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... the characteristics curves intersect the severity of service condition line “to the left,” that is, at an earlier point in the service condition. Design Root causes of failures that stem from design deficiencies refer to unacceptable features of a product or system that are a result of the design process...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... geometry should not be designed to the material selected. These both should be done concurrently, and the process will likely be an iterative one. Likewise, before the mold is made, the material should be selected to ensure the part can be molded properly. There is not another material that can provide...