Skip Nav Destination
Close Modal
By
Daniel P. Dennies, S. Lampman
By
Y. C. Lin, F. V. Ellis
By
A. Cervoni, M. A. Clark
By
Jonathan Carlos Contreras, Sylvia Lucia Natividad, Stephen William Stafford
By
Friedrich Karl Naumann, Ferdinand Spies
By
Karol K. Schrems
By
Michael E. Finn, John M. Tartaglia
By
H.S. Khatak, V. Seetharaman, J.B. Gnanamoorthy
By
Wilson G. Dobson, Neil J. Dilloff, Harold B. Gatslick
By
Wei Zheng, Adam Kramschuster, Alex Jordan
By
C.N. McCowan, T.A. Siewert
By
Jeffrey A. Jansen
By
Kevin J. Kennelley, Raymond D. Daniels
By
Michel Rigaud
Search Results for
powder characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 104
Search Results for powder characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failures Related to Metal Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts. binder jet sintering directed energy deposition failure analysis metal products metallurgical characteristics powder bed fusion quality assurance ADDITIVE...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001127
EISBN: 978-1-62708-214-3
... nipple at root of threaded hole. Origin of rupture is at top. Note evidence off zinc oxide 5.5×. Brittle fractures have certain characteristics that permit them to be properly identified: There is no gross permanent or plastic deformation in the region, although there may be permanent...
Abstract
Two plastic tank floats in separate toilets in one dwelling failed within a relatively brief period of time. Examination of the floats and of a brass connecting rod revealed that the fracture occurred at the base of the threaded hole in the nipple and was brittle in nature. The fracture surfaces were coated with zinc oxide. It was concluded that the failure resulted from improper repairs and/or adjustments, including the use of a cosmetic zinc oxide cream as a lubricant. The cream initiated deterioration of the originally ductile plastic, causing it to become brittle and fragile.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
... fail under light service loads. Two-piece assemblies can alleviate some difficulties, and air-hardening steels permit designs that would otherwise be impractical. Fig. 1 This die of manganese oil-hardening steel cracked (highlighted by magnetic powder) at the sharp change of section in quenching...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
Book Chapter
Failure Analysis for a Carbon Steel Vaporizer Coil
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... BTU per hour. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Dowtherm A is a mixture of diphenyl and diphenyl oxide and has superior heat transfer characteristics. The vaporizer coil material was specified as ASME SA-106 Grade B Schedule 80 pipe. The vaporizer coil...
Abstract
A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer. The cracking was confined to the inner diameter of the vaporizer coil at positions from 4:00 to 7:00. The cracking was characterized as transgranular and the fracture surface had beach marks. The failure mechanism was thermal fatigue. The heat transfer calculation predicted that dryout of the coil would occur for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause of failure was low flow transient operation.
Book Chapter
Investigation of Turbine Disc Cracking by Field Metallography
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001666
EISBN: 978-1-62708-229-7
... that the crack was located in the crown of the keyway close to the inlet end ( Figure 2 ). A strong indication was recorded by the loose powder method. No other indications were apparent in the keyway or adjacent bore regions. The magnetic rubber method also produced a strong, clear indication ( Figure 3...
Abstract
Stress-corrosion cracking of low-alloy steel turbine discs has emerged as a generic concern in nuclear generating stations. An investigation that made extensive use of field metallographic techniques to examine suspected cracking in such a component is described. The crack position, and its relationship to surface topographic features, were examined and recorded by magnetic rubber and high-resolution dental rubber replicating materials. Corrosion deposits on keyway surfaces and within the crack were collected with acetate foil replicas applied and then stripped from the keyway surfaces. Microstructural details were revealed by the use of field metallographic preparation techniques and replicated by acetate foil for examination with optical and scanning electron microscopes. It was possible by these techniques to establish the cracking mechanism as stress corrosion possibly related to chloride or sulphate ion steam contaminants. Subsequent sectioning and conventional metallography confirmed both the validity of the conclusions and the replication techniques.
Book Chapter
Failure Analysis Case Study on a Fractured Tailwheel Fork
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... the microstructure through optical and scanning electron microscopy. Sample grinding was conducted with silicone carbide pads, from 240 through 1200 grit. Polishing was done with 1, 0.3, and 0.05 μm alumina powders, along with 4 and 1 μm diamond pastes. The sample was cleaned in ethanol for 2 min in between each...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Book Chapter
Steel Casting with Insufficient Strength Properties
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001251
EISBN: 978-1-62708-235-8
...% ferrosilicon powder and coke the 2-ton melt was deoxidized in a ladle with 3 kg aluminum, and was cast in wet sand molds. The pieces were stripped from the mold while red hot and were cooled in air and normalized at 900° C for 3 hours. The sender reported that tendency toward abnormal fractures rose...
Abstract
In a steel foundry, tensile and bend specimens of castings made in a 2-ton basic arc furnace showed, at irregular intervals, regions with coarse-grained fractures where the specimens broke prematurely, so that the specified strength and toughness values could not be reached. Several cast tensile specimens and some forcibly-broken pieces of the flanges of armature yokes made of cast steel GS C 25 according to DIN 17 245 were investigated. Microscopic examination showed that the cause of damage was the superabundant use of aluminum as deoxidizer. According to recommendations, the aluminum addition was reduced by one-half. Since then, there have been no additional rejects due to insufficient tensile and bend values.
Book Chapter
The Influence of Wear on the Fatigue Failure of a Wire Rope
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001680
EISBN: 978-1-62708-221-1
..., fractography, and microhardness testing were used to gain an understanding of the failure mechanism. Wire failures occurred predominantly at characteristic wear sites between strands. These wear sites are identifiable by a large reduction in diameter; however, reduction in area was not responsible...
Abstract
The fatigue failure of a wire rope used on a skip hoist in an underground mine has been studied as part of the ongoing research by the Bureau of Mines into haulage and materials handling hazards in mines. Macroscopic correlation of individual wire failures with wear patterns, fractography, and microhardness testing were used to gain an understanding of the failure mechanism. Wire failures occurred predominantly at characteristic wear sites between strands. These wear sites are identifiable by a large reduction in diameter; however, reduction in area was not responsible for the location of failure. Fractography revealed multiple crack initiation sites to be located at other less noticeable wear sites or opposite the characteristic wear site. Microhardness testing revealed hardening, and some softening, at wear sites.
Book Chapter
Stress-Corrosion Cracking of a Brass Tube in a Generator Air Cooler Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091703
EISBN: 978-1-62708-229-7
... consisted of equiaxed alpha grains with annealing twins, as is normal for an admiralty brass in the annealed condition. The transverse through-wall crack contained branching secondary cracks. The mode of cracking was transgranular. Branched transgranular crack paths are characteristic of SCC. The cracks...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. The cooling medium for the tubes was water from a river. Air flowed over the finned exterior of the tubes, while water circulated through the tubes. Investigation (visual inspection, leak testing, history review, 100X micrographs etched in potassium dichromate, chemical analysis, and EDS and XRD analysis of internal tube deposits) supported the conclusion that the cause of the tube leaks was ammonia-induced SCC. Because the cracks initiated on the inside surfaces of the tubes and because the river water was not treated before it entered the coolers, the ammonia was likely present in the river water and probably concentrated under the internal deposits. Recommendations included either eliminating the ammonia (prohibitively expensive in cost and time) or using an alternate material (such as a 70Cu-30Ni alloy or a more expensive titanium alloy) that is resistant to ammonia corrosion as well as to chlorides and sulfur species.
Book Chapter
Prevention of Machining-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... modes. (a) Characteristic wear and fracture surfaces on cutting tools. (b) Catastrophic failure. (c) Typical wear measurements for a turning tool. VB , flank wear Cutting tools that wear beyond their end-of-life level are considered damaging to the process and represent a failed state...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Book Chapter
Failure of Welded Helium Tanks
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001348
EISBN: 978-1-62708-215-0
... ), and switched back to the transgranular mode in the unaffected base metal ( Fig. 2 ). The regions that had been fractured intentionally by tensile loading revealed dimples characteristic of ductile fracture ( Fig. 2 ). Fig. 2 SEM fractographs showing mode of fracture at different stages of crack...
Abstract
Two tanks made of AISI type 304 stainless steel exhibited cracking in the heat-affected zone (HAZ) of the weld that joined the dished end and the shell. The dished ends had been produced by cold deformation. Hardness measurement and simulation tests showed that the deformation was equivalent to a 30% reduction in thickness. Residual stresses were measured at about 135 MPa (20 ksi). The HAZ was found to be sensitized. The tanks had been stored in a coastal atmosphere for about 4 years before installation. The failure was attributed to intergranular stress-corrosion cracking in a sensitized HAZ due to chloride from the environment. Use of low-carbon type AISI 304L was recommended. Minimization of fit-up stresses and covering with polyethylene sheets during storage were also suggested.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... questions as an investigation develops possible explanation(s) for actual events: What characteristics are present in the damaged component? What characteristics are present or expected in an undamaged component? What are the possible explanations that would account for the differences between...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... explanation(s) for actual events: What characteristics are present in the failed/damaged component? What characteristics are present or expected in an undamaged component? What are the possible explanations that would account for the differences between damaged and undamaged components? What...
Abstract
This article describes the two critical goals in a failure investigation: damage mechanisms and damage modes. It explains the determination of primary and secondary damage mechanisms and discusses the methodology used to classify the damage mechanisms.
Book Chapter
Forensic Engineering: A Case Study
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001548
EISBN: 978-1-62708-219-8
.... The conclusions were: Deterioration of the panels was the result of corrosion of the aluminum at the plywood-aluminum interface. The corrosion was probably caused by use of fire retardant-treated plywood. Characteristics of the fire retardant specified included its being hydroscopic (i.e., able...
Abstract
In 1975, a manufacturer was awarded a contract to produce modular air-traffic control towers for the U.S. Navy. The specifications called for painted steel siding, but the manufacturer convinced the Navy to substitute aluminum-bonded-to-plywood panels that were provided by a supplier. In less than one year, the panels began to delaminate and the aluminum began to crack. It was found that the failure was the result of chloride-induced intergranular corrosion caused by chemicals in the adhesive and excessive moisture in the wood introduced during manufacturing.
Book Chapter
Polymer Processing—An Introduction
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... Applications and Typical Products In the simplest terms, all plastics processing techniques involve three key steps: fluidizing (plasticating), shaping, and solidification. Raw materials are typically sourced as pellets or powders (thermoplastic) or as monomeric liquid and cross-linking agent (thermoset...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Book Chapter
Failures Related to Metalworking
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in bulk working of wrought products. This article does not address powder metallurgy...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Book Chapter
Failure Analysis of a Large Blender in a Chemical Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001713
EISBN: 978-1-62708-220-4
... Abstract On 21 April 1995, the contents of a large blender (6 cu m) reacted and caused an explosion that killed and injured a number of workers at a plant in Lodi, NJ. A mixture of sodium hydrosulfite and aluminum powder was being mixed at the time of the accident. This report focuses...
Abstract
On 21 April 1995, the contents of a large blender (6 cu m) reacted and caused an explosion that killed and injured a number of workers at a plant in Lodi, NJ. A mixture of sodium hydrosulfite and aluminum powder was being mixed at the time of the accident. This report focuses on evaluations of the blender to determine if material or mechanical failures were the cause of the accident. The results indicate that the mixing vessel was metallurgically sound and did not contribute to the initiation of the failure. However, the vessel was not designed for mixing chemicals that must be isolated from water and excessive heat. Water leaking into the vessel through a graphite seal may have initiated the reactions that caused the accident.
Book Chapter
Characterization of Plastics in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... analyses are performed on metal and plastic materials center primarily on the techniques used to evaluate the composition and structure of the material. Unlike metals, polymers have a molecular structure that includes characteristics such as polymer functional groups, molecular weight, molecular weight...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Book Chapter
Stress Corrosion Cracking of 4340 Steel in Aircraft Ignition Starter Residues
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001560
EISBN: 978-1-62708-217-4
... of testing in the residue paste was (1) linear polarization, (2) cathodic polarization, and (3) anodic polarization. X-Ray Diffraction and Elemental Analysis To identify the compounds and aggressive agent or agents present in the residue product both powder x-ray diffraction and microprobe analysis...
Abstract
Military aircraft use a cartridge ignition system for emergency engine starts. Analysis of premature failures of steel (AISI 4340) breech chambers in which the solid propellant cartridges were burned identified corrosion as one problem with an indication that stress-corrosion cracking may have occurred. A study was made for stress-corrosion cracking susceptibility of 4340 steel in a paste made of the residues collected from used breech chambers. The constant extension rate test (CERT) technique was employed and SCC susceptibility was demonstrated. The residues, which contained both combustion products from the cartridges and corrosion products from the chamber, were analyzed using elemental analysis and x-ray diffraction techniques. Electrochemical polarization techniques were also utilized to estimate corrosion rates.
Book Chapter
Corrosion Failures of Industrial Refractories and Technical Ceramics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials. aerospace industry automotive industry chemical corrosion chemical...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
1