1-8 of 8 Search Results for

porcelain insulators

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 9 Fracture surface of an electrical porcelain insulator. The fracture origin is at the top center of the image. The relatively smooth fracture mirror is bordered by mist and velocity hackle. Optical microscope; reflected light; picture width ∼4 mm More
Image
Published: 01 January 2002
Fig. 11 Fracture surface of a porcelain insulator, which broke during cutting with a diamond saw. Fracture moved from right to left. Mist and velocity hackle and Wallner lines are readily seen in this fine-grained material. Camera image; picture width ∼20 mm. Source: Ref 3 More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0006897
EISBN: 978-1-62708-222-8
... Abstract The small cable (drop wire) providing service for individual subscribers from the aerial plant is held in place by a clamp made of a tin-coated brass body (attached to the cable) and a copper tail wire loop (attached to a galvanized steel hook or to a porcelain insulator). The tail...
Image
Published: 01 January 2002
Fig. 7 Cellulose acetate replica of the fracture surface of a glazed electrical porcelain insulator. The fracture markings in the glaze, in particular, clearly indicate that the fracture started in the porcelain, not in the glaze (fracture moved from the porcelain into the glaze). Optical More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003542
EISBN: 978-1-62708-180-1
... be prohibitions against doing anything destructive to the fracture pieces. It is beyond the scope of this article to discuss replicating procedures. However, Fig. 7 shows an image taken of a cellulose acetate replica of a fracture surface of an electrical porcelain insulator. Fracture markings are readily seen...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... for the missing stress cycles. Because the guy wires were very long (the tower was about 410 m, or 1350 ft, tall), they would have interfered with the low-frequency Loran signal, so the wires were broken into smaller segments by placing a number of porcelain insulators in the strand. Porcelain, however, has...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... and nonmetallic insulators. Corrosion is sometimes caused or aggravated by applied stress. For instance, SCC of stainless steel will occur when the steel is exposed to chlorides in the presence of tensile stresses. The magnitude of stresses obviously is affected by the fabrication techniques and the component...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2