1-20 of 155 Search Results for

polymer testing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 15 Typical load-displacement curve for a ductile polymer tested in uniaxial tension More
Image
Published: 15 May 2022
Fig. 4 Schematic stress-strain curves for a typical thermoplastic polymer tested at four temperatures and constant strain-rate; (1) low temperature and brittle behavior, (2) intermediate temperature with some ductility, (3) greater temperature (approaching glass transition temperature More
Image
Published: 15 May 2022
Fig. 15 Typical load-displacement curve for a ductile polymer tested in uniaxial tension More
Image
Published: 15 May 2022
Fig. 1 Stress-amplitude versus cycles-to-failure curves for several polymers tested at a frequency of 30 Hz. PS, polystyrene; EP, epoxy; PET, polyethylene terephthalate; PMMA, polymethyl methacrylate; PPO, polyphenylene oxide; PE, polyethylene; PP, polypropylene; PTFE, polytetrafluoroethylene More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... Abstract Rheology is defined as the study of the flow and deformation of matter. This article begins with an examination of flow behavior. It describes the geometries and methods employed for rheological testing of polymers in their molten state. It also discusses materials...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... of polymeric materials, such variables as the countersurface material, sliding environment, surface roughness, and contact pressure can heavily impact the wear rate of the polymer itself, sometimes by several orders of magnitude. Unless the testing conditions are kept the same and reported in detail...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... mechanics. fracture mechanics fracture testing fracture toughness polymers POLYMERIC MATERIALS are categorized by many different types, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... crystallinity, the impact of the temperature on the creep strain is equivalent to the impact of the percentage of the crystallinity on the creep strain in these polymers, at a constant temperature and stress level ( Ref 3 , 4 ). Creep in Polymers Creep and Viscoelasticity Creep tests consist...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... expensive and tend to be the most flammable ( Ref 2 ). Many efforts have been taken to improve the fire resistance of polymers. Along with these efforts has come the development of flammability tests, codes, and regulations that cite these test procedures. Fire Resistance of Polymeric Materials...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... Abstract With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... mechanical fatigue failure polymers thermal fatigue failure FAILURE OF STRUCTURAL polymeric materials under cyclic application of stress or strain is not only a subject of technical interest but one of industrial importance as well. Fracture of components is usually due to initiation and growth...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... method, and the test data generated. An awareness of the mechanical and physical properties of the polymer material is invaluable in understanding the test results and for troubleshooting. Cost of fabrication and testing/test facility requirements Knowledge of factors that affect data reliability...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... is tested against the polymer in a stress-free immersion condition. For this reason, the designer may consider these substances to be chemically compatible in service. In other instances, the plastic may be interacting with a foreign chemical substance that likely contacted the part in a manner...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... from metals. One of the most important differences between polymers and other materials is the statistical nature of their molecular chains. A distribution of chain lengths is a consequence of the random nature of most polymerization reactions. Thus, polymers are generally characterized by a molecular...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
..., extension, e , is approximately equal to engineering strain, ε.) Fig. 6 Strain-rate and temperature dependence of yield strength for polybutylene terephthalate All the data shown in Fig. 1 to 6 are the results of tensile tests. Polymers exhibit a hydrostatic pressure dependence...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... below their glass transition temperatures, glassy or semicrystalline polymers are weakly viscoelastic. For these polymers, test data based on a time-independent analysis will probably be adequate. As the temperature is increased, either by the environment or by heat given off during deformation...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
...-strain curve. Thus, changes were explained through changes in the strain-rate or temperature for a smooth tensile specimen. Other changes in the mechanical properties are similarly associated with the viscoelastic nature of polymeric materials. Fracture testing of polymers is usually performed...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... conditions must closely mimic the service conditions of the polymeric component ( Ref 5 ). Despite the simple nature of these experimental tests, the S - N approach is widely accepted in the engineering polymer community for design applications in which stress concentrations are expected to be minimal...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... that the equivalency between time and temperature holds best for amorphous polymers. However, further testing and study has shown that classes of polymers have different constants to be applied to the extrapolation. The approach assumes that the viscoelastic time-dependent function is f(t,T). The topic...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... of the random nature of most polymerization reactions. Thus, polymers are generally characterized by a molecular-weight distribution and the associated averages. This is discussed in more detail in the article “Characterization of Plastics in Failure Analysis” in this Volume. Deformation and Fracture...