1-20 of 78 Search Results for

polymer matrix composites

Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites. engineering components fatigue fracture fractography metals polymer-matrix composites polymers...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
... polymeric matrix ( Ref 33 ). Adhesive Wear of Hybrid Polymer Composites Incorporation of different types of filler such as a combination of short fibers and particle content, better mechanical properties, and wear behavior are expected to be obtained. The main issue regarding hybrid polymer...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
..., and they oscillate with a period that is proportional to the weave spacing. Matrix-rich regions between the plies of a composite material produce interlaminar echoes which attenuate the back-surface reflection but do not eliminate it. Delaminations totally eliminate the back-surface reflection and produce an echo...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
..., aspect ratio, distribution, orientation, combination with fillers, and the quality of bonding with the matrix), and operating conditions. Fibers are far more wear resistant than the matrix and hence control the wear of composite. Continuous fiber-reinforced composites with a thermoset-polymer matrix...
Image
Published: 01 January 2002
–e) Worn surface of PEI GF+gr ( L , 112 N; V , 2.1 m/s). (b) Severe melt flow of polymer in sliding direction with maximum fibers normal to the surface, cracks generated in sliding direction, and a pulled out fiber, (c) Magnified view of pulled-out fiber from the matrix with worn elliptical More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
.... The polymer matrix is subject not only to damage mechanisms but also to interfacial and stress-cracking mechanisms. One example of interfacial failure is the loss of compressive strength in carbon-fiber-reinforced epoxy composites under hot and wet conditions. Fiber buckling is a result of interfacial failure...
Image
Published: 01 January 2002
Fig. 22 Failure wear mechanisms of unidirectional fiber reinforced polymer composites with different orientations of fibers with respect to sliding direction against a smooth metal surface. (a) Normal aramid fibers. (b) Parallel carbon fibers. (c) Wear reduction mechanism due to hybridization More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... thickness. Source: Ref 4 Thermal Mismatch In composite structures, thermal stresses arise both from inhomogeneous cooling and as a result of a thermal mismatch due to differences in CTEs between the filler and matrix polymer. Ideally, in terms of processing, one should attempt to minimize...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... molecules that extended out of the samples showing fibers. In order to reduce the wear rate and utilize the excellent low friction property of PTFE, this polymer has often been used with fillers to form composites. PTFE itself has also been used as a filler for other polymeric systems such as PE. Figure 12...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006909
EISBN: 978-1-62708-395-9
... absorbed. Absorbed water can adversely affect polymeric materials through dimensional changes (swelling of the material), surface degradation (color and gloss changes, crazing, blistering, etc.), and plasticization (softening) of the polymer, depressing T g and reducing mechanical and physical...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006920
EISBN: 978-1-62708-395-9
... for lifetime estimation. Polymer Photochemistry During the weathering of a polymeric material, the changes in physical properties (mechanical, electrical, permeability) and some aesthetic properties (discoloration, gloss loss, chalking, fading) are attributable to the chemical evolution of the matrix...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... of a few formulations of thermoset composites. The relevant micrograph is given in Fig. 9 . It is seen from these results that the wear resistance of phenolic resin increases by almost two orders of magnitude when fillers such as carbon and aramid fibers are added to the phenolic resin matrix...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... and improving polymer interactions in a composite matrix. Often, calcium carbonates are used in combination with a more reinforcing filler. The rubber industry uses the highest reinforcement of calcium carbonates. Carbon-carbonated fillers are usually manufactured on a large scale using a mechanical milling...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... ). There are several fracture modes in polymer composites, namely, delamination or interlaminar fracture, matrix cracking or intralaminar fracture, matrix-fiber debonding, fiber breaking, and fiber pull-out ( Ref 61 , 67 ). Typically, failure processes in polymer composites are time-dependent, reflecting at least...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... Abstract This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
...—approximately a few nanometers. X-ray photoelectron spectroscopy is used for the chemical surface analysis of polymers to study the chemical composition. The term surface analysis is traditionally used for surface chemical analysis techniques performed by Auger electron spectroscopy (AES) and XPS, which...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... of failure analysis. Current ASTM volumes include more than 20 protocols for determining the viscosity of a polymeric solution or melt. From these viscosity measurements, mathematical relationships are used to determine the polymer’s MW. Several categories of test methods are available for making...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... crystal phases and structures in solid materials. failure analysis infrared spectroscopy nuclear magnetic resonance spectroscopy polymer structure thermal analysis X-ray diffraction FAILURE OF POLYMERIC materials is the result of a very complex process. This article introduces procedures...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... output and select an extruder capable of producing a desired output. The rotating action of the screw mixes the polymer melt so that it has a homogeneous temperature. If a blend or composite mixture is to be created, the screw also disperses the filler phase into the polymer matrix. This can...