1-20 of 362 Search Results for

plastics processing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... Abstract Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered. glass transition temperature...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... Abstract This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design...
Image
Published: 15 May 2022
Fig. 25 Basic overview of the steps used in the plastic injection molding process. (a) Steps 1 to 7 of the process. (b) Schematic of the injection molding process: A, injection phase; B, pack/hold phase; C, plasticating/screw recovery phase; D, mold open/part ejection phase More
Image
Published: 15 May 2022
Fig. 42 Schematic of the gas-assist injection molding process. (a) Plastic injection. (b) Gas injection. (c) Part ejection More
Image
Published: 15 May 2022
Fig. 45 Schematic drawings of compression molding process. (a) Plastic material is placed in cavity. (b) Heated plastic is compressed. More
Image
Published: 15 May 2022
Fig. 1 The plastic part development process can be simplified to a three-step process. 1. Acquire the background information on the materials, the processes, and the tooling to support the processes. 2. Create the solution for the “need” and the “user.” 3. Implement the solution More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
... Abstract This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Abstract This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006942
EISBN: 978-1-62708-395-9
... Continuous improvement After subject event This Volume provides an introduction to various degradation, failure, and analytical processes specifically addressing plastics and polymeric materials. This information serves as a fundamental tool set and background needed by the failure analyst when...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... Abstract This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... Abstract Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006926
EISBN: 978-1-62708-395-9
... are introduced into plastics in the form of residual stresses during processing, as in shrinkage, or in the form of external stresses incurred during the service life. A combination of chemical and physical factors, along with stress, usually leads to a serious deterioration in properties, even if the stress...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... Abstract Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all...
Image
Published: 01 January 2002
Fig. 54 Near crack-tip deformation and fracture processes. The stress singularity at the free surface of a crack is relieved by crack blunting and plastic flow or by microcracking, Shape of the plastic zone depends on the extent of strain hardening in the plastic zone. ρ, tip radius More
Image
Published: 15 January 2021
Fig. 64 Near crack-tip deformation and fracture processes. The stress singularity at the free surface of a crack is relieved by crack blunting and plastic flow or by microcracking. Shape of the plastic zone depends on the extent of strain hardening in the plastic zone. ρ, tip radius More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090451
EISBN: 978-1-62708-218-1
... the parts to temperatures above the recognized limits for PET. Brittle fracture Chemical analysis Drying Feedstock Injection moldings Molding resins Plastic jackets Thermal shock Polyethylene terephthalate Brittle fracture (Other, general, or unspecified) processing-related failures...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
.... Engineering plastics all have, as their principal constituent, one or more synthetic polymer resins and almost universally contain additives. Additives, which have much smaller molecules than polymers, provide color, flexibility, rigidity, flame resistance, weathering resistance, and/or processibility...