1-20 of 1506 Search Results for

plastic

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... Abstract Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001127
EISBN: 978-1-62708-214-3
... Abstract Two plastic tank floats in separate toilets in one dwelling failed within a relatively brief period of time. Examination of the floats and of a brass connecting rod revealed that the fracture occurred at the base of the threaded hole in the nipple and was brittle in nature...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001378
EISBN: 978-1-62708-215-0
... Abstract Two 38 mm (1.5 in.) diam threaded stud bolts that were part of a steel mold die assembly from a plastics molding operation were examined to determine their serviceability. Chemical analysis showed the material to be a plain carbon steel that approximated 1045. Visual examination...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
... Abstract This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... Abstract There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
.... This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... Abstract This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing...
Image
Published: 01 June 2019
Fig. 6 Corrosion product build-up on a blue plastic header (a), degraded plastic and corroded Au bridgewire (b) after two years at 74 C. The corrosion produce on the solder is Au + In (OH) 2 Cl (c). The corroded bridgewire is shown in a stereo pair at the lower right (d). More
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... the applicability of available analytical tools in conjunction with an understanding of failure mechanisms. brittle fractures crack propagation deformation ductile fractures fractography fracture characteristics fracture modes fracture surfaces mechanical behavior plastics structural polymers...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... Abstract This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... Abstract This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... Abstract This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides...
Image
Published: 01 June 2019
Fig. 1 Plastic-lined stainless steel spherical bearing for a hydrofoil that failed by corrosion fatigue. (a) Construction of bearing and location of fractures. Dimensions given in inches. (b) Fracture surface showing multiple fatigue origins (arrows) at edge of bore and on the spherical More
Image
Published: 01 June 2019
Fig. 12 Section of race showing severe plastic deformation. More
Image
Published: 01 June 2019
Fig. 14 Showing Plastic distortion of rollers and disintegration of the cage of a roller bearing. More
Image
Published: 01 June 2019
Fig. 4 Evidence of plastic deformation on the worn surface of failed sample (load: 15 N; sliding velocity: 1.67 m s −1 ; sliding distance: 1.1 × 10 4 m) More
Image
Published: 01 January 2002
Fig. 21 Example of plastic deformation detected metallographically by the presence of bent annealing twins. (a) Annealed 80–20 brass. (b) Cold worked 20% 80–20 brass. Plastic deformation can be detected metallographically by the presence of bent annealing twins, the presence of deformation More
Image
Published: 01 January 2002
Fig. 57 The plastic stretched zone at the tip of a macroscale crack. Source: Ref 28 More
Image
Published: 01 January 2002
Fig. 85 Fracture obtained by first plastic straining in torsion and then straining in tension. The fracture appearance becomes more characteristic of the first strain increment as the first strain increment increases in magnitude. Source: Ref 4 More
Image
Published: 01 January 2002
Fig. 1 Typical stress-strain curve for a fiber, a plastic, and an elastomer More