Skip Nav Destination
Close Modal
Search Results for
pitting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 866 Search Results for
pitting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001499
EISBN: 978-1-62708-236-5
... of the gears were found to be pitted, one low on profile and the adjacent tooth high on profile. The mating gear had a similar characteristic, two adjacent teeth with evidence of pitting and the same difference in profile. It was correctly deduced that the pitting occurred because the gears were in a static...
Abstract
Three spur gears made from 8622 Ni-Cr-Mo alloy steel formed a straight-line train in a speed reducer on a rail-mounted overslung lumber carrier. The gears were submitted for nondestructive examination and evaluation, with no accompanying information or report. Two teeth on one of the gears were found to be pitted, one low on profile and the adjacent tooth high on profile. The mating gear had a similar characteristic, two adjacent teeth with evidence of pitting and the same difference in profile. It was correctly deduced that the pitting occurred because the gears were in a static position under a reverberating load for an extended period of time.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091201
EISBN: 978-1-62708-219-8
..., and 5x/10x images etched in ASTM 89 reagent) supported the conclusion that the pitting in the austenitic stainless steel pipe was believed to be caused by damage to the passive layer brought about by a combination of MIC, high chloride levels, and high total dissolved solids. The low-flow and stagnant...
Abstract
Type 316L (UNS S31603) austenitic stainless steel piping was installed as part of a storm-sewer treatment collection system in a manufacturing facility. Within six months of start-up, leaks were discovered. Investigation (on-site current flow testing, visual inspection, water tests, and 5x/10x images etched in ASTM 89 reagent) supported the conclusion that the pitting in the austenitic stainless steel pipe was believed to be caused by damage to the passive layer brought about by a combination of MIC, high chloride levels, and high total dissolved solids. The low-flow and stagnant conditions present in the piping were primary contributors to the pit progression. Recommendations included replacing the pipe. Several alloys, nonmetallic materials, and lining materials were proposed for coupon testing to determine which would operate best in an environment with high levels of aerobic bacteria.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001697
EISBN: 978-1-62708-219-8
... treatment C12200 UNS C12200 ASTM B88 UNS C12200 Pitting corrosion Potable waters are defined as waters that are suitable for drinking purposes. Potable waters are in use throughout the United States and new systems are being installed on a daily basis. The quality of potable waters...
Abstract
Corrosion in potable and nonpotable water systems has been well documented in the past, and new research discusses innovations in water treatment and materials that are designed to enhance the quality of a water system, whether commercial or residential. This paper is a collection of five case histories on the failure of copper and steels as used in potable and non-potable water systems. The case histories cover a range of applications in which copper and steel products have been used. Copper and steel pipes are the two most commonly used materials in residential, commercial and industrial applications. The projects that are discussed cover these three important applications. The purpose of presenting this information is to allow the reader to gain an understanding of real life corrosion issues that affect plumbing materials, how they should have been addressed during the design of the water system, and how a water system should be maintained during service. We share this information in the hope that the reader will gain some limited knowledge of the problems that exist, and apply that knowledge in designing or using water systems in day-to day life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048419
EISBN: 978-1-62708-226-6
... Abstract Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made...
Abstract
Heavy pitting corrosion on type 304 stainless steel bone screw was studied. A screw head that exhibited heavy pitting corrosion attack was observed. Deep tunnels that penetrated the screw head and followed the inclusion lines were revealed. The screw was inserted in a plate made of type 316LR stainless steel and some mechanical fretting and very few corrosion pits were revealed. Type 304 stainless steel was deemed not to be satisfactory as an implant material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001573
EISBN: 978-1-62708-226-6
... Abstract TiN coated back surgery wires were made of Ti-6Al-4V. The reported failure was the presence of pits located in the uncoated area of the wires. The uncoated area of the wire is where the wire is fixtured in the coating chamber during coating. Examination and analysis of the pits using...
Abstract
TiN coated back surgery wires were made of Ti-6Al-4V. The reported failure was the presence of pits located in the uncoated area of the wires. The uncoated area of the wire is where the wire is fixtured in the coating chamber during coating. Examination and analysis of the pits using SEM/EDX detection unit revealed significant peaks of B, O, Zr and Fe. Moreover, the shape of the pits was similar to an arc crater. The formation of pits in the wire was caused during coating due to microarcing. A contaminated fixture used during the coating most likely caused the microarcing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048253
EISBN: 978-1-62708-234-1
... Abstract Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core...
Abstract
Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core. It was found that gear 1 had a lower hardness than specified while the case hardness of gear 2 was found to be within limits. Both the pitting and the wear pattern were revealed to be more severe on gear 1 than on gear 2. Surface-contact fatigue (pitting) of gear 1 (cause of lower carbon content of the carburized case and hence lower hardness) was found to be the reason for failure. It was recommended that the depth of the carburized case on impeller drive gears be increased from 0.4 to 0.6 mm to 0.6 to 0.9 mm to improve load-carrying potential and wear resistance. A minimum case-hardness requirement was set at 81 HRA.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
... subsequently remedied after considerable investigations. Extrusions Synchroton radiation Vacuum chambers Water connections 3003 UNS A93003 6061 UNS A96061 Pitting corrosion Introduction The storage ring vacuum chamber is fabricated from 6061 aluminum ( Fig. 1 ). The water cooling holes...
Abstract
The Advanced Photon Source (APS) is a state-of-the-art synchrotron light source. The storage ring vacuum chamber is fabricated from 6061 extruded aluminum. Water connections to the vacuum chambers that were fabricated from 3003 aluminum had developed water leaks, which were subsequently remedied after considerable investigations.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048318
EISBN: 978-1-62708-234-1
... Abstract A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header...
Abstract
A resistance-welded carbon steel superheater tube made to ASME SA-276 specifications failed by pitting corrosion and subsequent perforation, which caused the tube to leak. The perforation was found to have occurred at a low point in a bend near the superheater outlet header. It was found that the low points of the superheater tubes could not be completely drained during idle periods. Water-level marks were noticed on the inside surface above the area of pitting. It was revealed by microscopic examination that localized pitting had resulted from oxidation. It was concluded that water contained in the tube during shutdowns had accumulated and cumulative damage due to oxygen pitting resulted in perforation of one of the tubes. Filling the system with condensate or with treated boiler water was suggested as a corrective action. Alkalinity was suggested to be maintained at a pH of 9.0 and 200 ppm of sodium sulfite should be added to the water.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048691
EISBN: 978-1-62708-220-4
... Abstract AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section...
Abstract
AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section of a pit and further confirmed by x-ray spectrometry. It was concluded that the failure was caused by pitting due to chlorides in the water used to flush the tubes before service. The use of brackish water to flush or test stainless steel equipment was recommended to avoid pitting.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048702
EISBN: 978-1-62708-220-4
... Abstract An aluminum brass seawater surface condenser failed due to pitting after less than one year of service. Large pits filled with a green deposit were evidenced under the nonuniform black scale present over the entire inside surface of the tube. The black deposit was identified...
Abstract
An aluminum brass seawater surface condenser failed due to pitting after less than one year of service. Large pits filled with a green deposit were evidenced under the nonuniform black scale present over the entire inside surface of the tube. The black deposit was identified as primarily copper sulfide, with zinc and aluminum sulfides while the green deposit was revealed to be copper chloride. The combination of sulfide and chloride attack on the tubes was concluded to have resulted in the failure. Injection of ferrous sulfate upstream of the condenser which could aid the formation of protective oxide films was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0060104
EISBN: 978-1-62708-220-4
...-side fluid was contaminated liquid methylene chloride. More than 100 tubes exhibiting severe outer surface pitting and cracklike indications near each tube sheet were revealed during eddy current inspection. It was observed that the indications correlated with rust-stained, pitted, and cracked areas...
Abstract
Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube-side fluid was contaminated liquid methylene chloride. More than 100 tubes exhibiting severe outer surface pitting and cracklike indications near each tube sheet were revealed during eddy current inspection. It was observed that the indications correlated with rust-stained, pitted, and cracked areas on the outer surfaces. The cracking was revealed by metallographic examination to have initiated from the outer surface, frequently at pits, and penetrated the tube wall in a transgranular, branching fashion. The crack features were characteristic of chloride stress-corrosion cracking. A change in tube material was recommended to avoid future failures and loss of service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001654
EISBN: 978-1-62708-220-4
... Abstract AISI type 321 stainless steel heat exchanger tubes failed after only three months of service. Macroscopic examination revealed that the leaks were the result of localized pitting attack originating at the water side surfaces of the tubes. Metallographic sections were prepared from both...
Abstract
AISI type 321 stainless steel heat exchanger tubes failed after only three months of service. Macroscopic examination revealed that the leaks were the result of localized pitting attack originating at the water side surfaces of the tubes. Metallographic sections were prepared from both sets of tubes. Microscopic examination revealed that the pits had a small mouth with a large subsurface cavity which is typical of chloride pitting of austenitic stainless steel. However, no pitting was found in other areas of the system, where the chloride content of the process water was higher. This was attributed to the fact that they were downstream from a deaeration unit. It was concluded that the pitting was caused by a synergistic effect of chlorine and oxygen in the make-up water. Because it was not possible to install a deaeration unit upstream of the heat exchangers, it was recommended that a molybdenum-bearing stainless steel such as 316L or 317L be used instead of 321.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047935
EISBN: 978-1-62708-225-9
... used grease was nonconductive. It was concluded that the pits were formed by momentary welding between the ball and ring surfaces. The lubricant was replaced by electrically conductive grease as a corrective measure. Lubricants Melting Resistivity Welding 440C UNS S44004 (Other...
Abstract
Ball bearings made of type 440C stainless steel hardened to 60 HRC and suspected as the source of intermittent noise in an office machine were examined. A number of spots on the inner-ring raceway were revealed by scanning electron microscopy. The metal in the area around the spot was evidenced to have been melted and welded to the inner-ring raceway. It was revealed by randomly spaced welded areas on the raceways that the welding was the result of short electrical discharges between the bearing raceways and the balls. The use of an electrically nonconductive lubricant in the bearings was suspected to have caused the electric discharge by accumulation and discharge of static charge. The electrical resistance between the rotor and the motor frame lubricated with electrically conductive grease and the grease used in the current case was measured and compared to confirm the fact the currently used grease was nonconductive. It was concluded that the pits were formed by momentary welding between the ball and ring surfaces. The lubricant was replaced by electrically conductive grease as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048257
EISBN: 978-1-62708-217-4
... Abstract Evidence of destructive pitting on the gear teeth (AMS 6263 steel) in the area of the pitchline was exhibited by an idler gear for the generator drive of an aircraft engine following test-stand engine testing. The case hardness was investigated to be lower than specified...
Abstract
Evidence of destructive pitting on the gear teeth (AMS 6263 steel) in the area of the pitchline was exhibited by an idler gear for the generator drive of an aircraft engine following test-stand engine testing. The case hardness was investigated to be lower than specified and it was suggested that it had resulted from surface defects. A decarburized surface layer and subsurface oxidation in the vicinity of pitting were revealed by metallographic examination of the 2% nital etched gear tooth sample. It was concluded that pitting had resulted as a combination of both the defects. The causes for the defects were reported based on previous investigation of heat treatment facilities. Oxide layer was caused by inadequate purging of air before carburization while decarburization was attributed to defects in the copper plating applied to the gear for its protection during austenitizing in an exothermic atmosphere. It was recommended that steps be taken during heat treatment to ensure neither of the two occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091318
EISBN: 978-1-62708-217-4
... Abstract Two freshwater tanks (0.81 mm (0.032 in) thick, type 321 stainless steel) were removed from aircraft service because of leakage due to pitting and rusting on the bottoms of the tanks. One tank had been in service for 321 h, the other for 10 h. There had been departures from...
Abstract
Two freshwater tanks (0.81 mm (0.032 in) thick, type 321 stainless steel) were removed from aircraft service because of leakage due to pitting and rusting on the bottoms of the tanks. One tank had been in service for 321 h, the other for 10 h. There had been departures from the specified procedure for chemical cleaning of the tanks in preparation for potable water storage. The sodium hypochlorite sterilizing solution used was three times the prescribed strength, and the process exposed the bottom of the tanks to hypochlorite solution that had collected near the outlet. Investigation (visual inspection, 95x unetched images, chemical testing with a 5% salt spray, chemical testing with sodium hypochlorite at three strength levels, samples were also pickled in an aqueous solution containing 15 vol% concentrated nitric acid (HNO3) and 3 vol% concentrated hydrofluoric acid (HF) and were then immersed in the three sodium hypochlorite solutions for several days) supported the conclusion that failure of the stainless steel tanks by chloride-induced pitting resulted from using an overly strong hypochlorite solution for sterilization and neglecting to rinse the tanks promptly afterward. Recommendations included revising directions for sterilization and rinsing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001698
EISBN: 978-1-62708-222-8
... Abstract A residential subdivision near Tampa, FL was constructed in 1984 through 1985. Several sections of copper pipe were removed from one residence that had reported severe leaking. Visual examination revealed extensive pitting corrosion throughout the ID surfaces of the sample. Microscopic...
Abstract
A residential subdivision near Tampa, FL was constructed in 1984 through 1985. Several sections of copper pipe were removed from one residence that had reported severe leaking. Visual examination revealed extensive pitting corrosion throughout the ID surfaces of the sample. Microscopic evaluation of a cross section of a copper pipe revealed extensive pitting corrosion throughout the inner diametral surfaces of the pipe. Some pits had penetrated through the wall thickness, causing the pin hole leaks. Analysis of a sample of water obtained from the subdivision revealed relatively high hardness levels (210 mg/l), high levels of sulfate ions (55 mg/l), a pH of 7.6 and a sulfate-to-chloride ratio of 3:1. Analysis of corrosion product removed from the ID surfaces of the pipe section revealed that an environment rich in carbonates existed inside the pipe, a result of the hard water supply. It was concluded that pitting corrosion was a result of the corrosive waters supplied by the local water utility. Waters could be rendered non-pitting by increasing their pH to 8 or higher and neutralizing the free carbon dioxide.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001063
EISBN: 978-1-62708-214-3
... plant. Examination of tubes and tube sheets revealed pitting damage on the OD surface. Some of the pits had penetrated fully, resulting in holes. Inside diameter surfaces were free of corrosion. Macro- and microexaminations indicated that the tubes had been properly manufactured. Pitting was attributed...
Abstract
Several tubes in a 35 m 2 (115 ft 2 ) type 316 stainless steel shell-and-tube condenser leaked unexpectedly in an organic chemical plant that produces vinyl acetate monomer. Leaks were discovered after 5 years of operation and relocation of the condenser to another unit in the same plant. Examination of tubes and tube sheets revealed pitting damage on the OD surface. Some of the pits had penetrated fully, resulting in holes. Inside diameter surfaces were free of corrosion. Macro- and microexaminations indicated that the tubes had been properly manufactured. Pitting was attributed to stagnant water on the shell side. It was recommended that the surfaces not be kept in contacts with closed stagnant water for appreciable lengths of time.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... hydrotesting procedures was recommended to prevent similar failures. Bacterial corrosion Chemical processing equipment, corrosion Leakage Pipe, corrosion 304 UNS S30400 Biological corrosion Pitting corrosion Background The type 304 stainless steel pipelines, vessels, and tanks...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001616
EISBN: 978-1-62708-229-7
... Abstract Severe pitting corrosion of a carbon steel tube was observed in the air preheater of a power plant, which runs on rice straw firing. Approximately 1450 tubes were removed from Stage 3 of the preheater (air inlet and flue gas outlet) due to corrosion and local bursting. Samples from...
Abstract
Severe pitting corrosion of a carbon steel tube was observed in the air preheater of a power plant, which runs on rice straw firing. Approximately 1450 tubes were removed from Stage 3 of the preheater (air inlet and flue gas outlet) due to corrosion and local bursting. Samples from Stage 2 (where corrosion was low) and Stage 3 (severe corrosion) were taken and subjected to visual inspection, SEM, x-ray diffraction, microhardness measurement, and chemical and microstructural analysis. It was determined that extended non-operation of the plant resulted in the settlement of corrosive species on the tubes in Stage 3. The complete failure of the tube occurred due to diffusion of these elements into the base metal and precipitation of potassium and chlorine compounds along the grain boundaries, with subsequent dislodging of grains. The nonmetallic inclusions acted as nucleating sites for local pitting bursting. Nonuniform heat transfer in Stage 3 operation accelerated the selective corrosion of front-end tubes. The relatively high heat transfer in this stage resulted in condensation of some corrosive gases and consequent corrosion. Continuous operation of the plant with some precautions during assembly of the tubes reduced the corrosion problem.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001320
EISBN: 978-1-62708-215-0
... Abstract Severe pitting was found on the internal surfaces of SA-210 Grade C waterwall tubing of a coal-fired boiler at a cogeneration facility. Metallographic examination showed the pits to be elliptical, having an undercut morphology with supersurface extensions,. a type of pitting...
Abstract
Severe pitting was found on the internal surfaces of SA-210 Grade C waterwall tubing of a coal-fired boiler at a cogeneration facility. Metallographic examination showed the pits to be elliptical, having an undercut morphology with supersurface extensions,. a type of pitting characteristic of acidic attack. Energy-dispersive X-ray spectroscope revealed the presence of chlorine in the pit deposits, indicating that the pitting was promoted by underdeposit chloride attack. The presence of copper in deposits on the internal surface of the tubing may have acted as a secondary factor. Acidic conditions may have formed during a low-pH excursion that reportedly occurred several years prior. To prevent future failures, severely damaged tubing must be replaced. Internal deposit buildup must be removed by chemical cleaning to prevent further pitting. Water quality needs continued monitoring and maintenance to ensure that another low-pH excursion does not occur.
1