Skip Nav Destination
Close Modal
By
S. Maruthamuthu, P. Dhandapani, S. Ponmariappan, S. Sathiyanarayanan, S. Muthukrishnan ...
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
Search Results for
phosphate layers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 38 Search Results for
phosphate layers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Investigation of a Structural Component of the Main Landing Gear of a Transport Aircraft
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 10 An enlarged view showing the thick manganese phosphate layer (arrows) that was applied on the inner surface of the fractured truck beam. 500×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... of the pit. The second arrow in the middle marks the manganese phosphate coating. Fig. 9 A secondary SCC crack that extended inward from the surface of the corrosion pit shown in Figure 8 . 200× Fig. 10 An enlarged view showing the thick manganese phosphate layer (arrows...
Abstract
The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit. The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces of the failed beam could not be conclusively established because of the long term service exposure and presence of lubricants.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001321
EISBN: 978-1-62708-215-0
... damage was typical of alkaline corrosion and confirmed that the boiler tubes failed as a result of steam blanketing that concentrated phosphate salts. The severe alkaline conditions developed most probably because of the decomposition of trisodium phosphate, which was used as a water treatment chemical...
Abstract
Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin on the crown of the top tubes and located in an area near the upward bend of the tube. The inside of all the tubes were covered with a loosely adherent, black, alkaline, powdery deposit comprised mainly of magnetite. The corroded areas, however, had relatively less deposit. The morphology of the corrosion damage was typical of alkaline corrosion and confirmed that the boiler tubes failed as a result of steam blanketing that concentrated phosphate salts. The severe alkaline conditions developed most probably because of the decomposition of trisodium phosphate, which was used as a water treatment chemical for the boiler feed water.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001003
EISBN: 978-1-62708-227-3
... of this attack in the high-phosphate solution. This was a failure analysis, not a research and development project, so the corrosion rates were not measured, but subjectively there appeared to be a much thicker layer of oxide in the specimen of Fig. 5a than that of Fig. 5b . A test of the concept...
Abstract
Gross wastage and embrittlement were observed in plain carbon steel desuperheaters in five new Naval power plants. The gross wastage could be duplicated in laboratory bomb tests using sodium hydroxide solutions and was concluded to be caused by free caustic concentrated by high heat flux. The embrittlement was shown to be caused by the flow of corrosion generated hydrogen which converted the cementite to methane which nucleated voids in the steel. A thermodynamic estimate indicated that a small amount of chromium would stabilize the carbides against decomposition by hydrogen in this temperature range, and laboratory tests with 2-14% Cr steel verified this.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... layer. Phosphates are generally used in alkaline environments of pH greater than 8. Cathodic protection systems require an anode, a cathode, a continuous electric circuit between the cathode and the anode, and the presence of an electrolyte. The two types of cathodic protection are sacrificial-anode...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001396
EISBN: 978-1-62708-229-7
... and it will be useful to consider first in detail the mechanism of magnetite formation. Magnetite (Fe 3 O 4 ) is one of the oxides of iron—it is black and magnetic in nature. Boiler water will react with the clean surface of a steel tube to form a layer of magnetite, which serves subsequently to confer corrosion...
Abstract
The phenomenon of on-load corrosion is directly associated with the production of magnetite on the water-side surface of boiler tubes. On-load corrosion may first be manifested by the sudden, violent rupture of a boiler tube, such failures being found to occur predominantly on the fire-side surface of tubes situated in zones exposed to radiant heat where high rates of heat transfer pertain. In most instances, a large number of adjacent tubes are found to have suffered, the affected zone frequently extending in a horizontal band across the boiler. In some instances, pronounced local attack has taken place at butt welds in water-wall tubes, particularly those situated in zones of high heat flux. To prevent on-load corrosion an adequate flow of water must occur within the tubes in the susceptible regions of a boiler. Corrosion products and suspended matter from the pre-boiler equipment should be prevented from entering the boiler itself. Also, it is good practice to reduce as far as possible the intrusion of weld flash and other impedances to smooth flow within the boiler tubes.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... different from this. The T91 steel contains 9% Cr and 1% Mo as major alloying elements. The T91 steel tubes have an additional innermost layer of scale deposits of spinel oxide, such as (Fe, Cr) 3 O 4 or (Fe, Cr, Mo) 3 O 4 , which imparts an additional heat-transfer surface to this alloy. The composition...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... is the evolution of hydrogen gas according to Eq 4. This also applies to corrosion in other acids, such as sulfuric, phosphoric, and hydrofluoric, and water-soluble organic acids, such as formic and acetic. In each case, only the hydrogen ion is active; the other ions, such as sulfate, phosphate, and acetate, do...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
... Abstract Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide...
Abstract
Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide not only effective interlocking but also a continuous working surface for withstanding in-service wear. The compact construction and fill-factor of locked coil wire ropes make them relatively impervious to the ingress of moisture and render them less vulnerable to corrosion. However, such ropes are comparatively more rigid than conventional wire ropes with fiber cores and therefore are more susceptible to the adverse effects of bending stresses. The reasons for premature in-service wire rope failures are rather complex but frequently may be attributed to inappropriate wire quality and/or abusive operating environment. In either case, a systematic investigation to diagnose precisely the genesis of failure is desirable. This article provides a microstructural insight into the causes of wire breakages on the outer layer of a 40 mm diam locked coil wire rope during service. The study reveals that the breakages of Z-profile wires on the outer rope layer were abrasion induced and accentuated by arrays of fine transverse cracks that developed on a surface martensite layer.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
.../matrix interfaces, and it can build up pressure great enough to produce internal cracks. If these cracks are just below the surface, the hydrogen-gas pressure in the cracks can lift up and bulge out the exterior layer of the metal, so that it resembles a blister ( Fig. 7 ). The equilibrium pressure...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... of sacrificial (galvanic) action and oil barrier layer held between the open lattice of phosphate crystals on the steel part surface. The microcrystalline structure of the phosphate is very delicate and can be easily damaged by the conveyor systems commonly used in the coating process lines. Most phosphate lines...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001769
EISBN: 978-1-62708-241-9
... W.S. , Murray R.G.E. : Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments . Appl. Environ. Microbiol. 45 , 1094 – 1108 ( 1983 ) 5. Ghiorse W.C. : Biology of iron...
Abstract
This study examines the role of calcium-precipitating bacteria (CPB) in heat exchanger tube failures. Several types of bacteria, including Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551), were found in scale collected from heat exchanger tubes taken out of service at a gas turbine power station. The corrosive effect of each type of bacteria on mild steel was investigated using electrochemical (polarization and impedance) techniques, and the biogenic calcium scale formations analyzed by XRD. It was shown that the bacteria contribute directly to the formation of calcium carbonate, a critical factor in the buildup of scale and pitting corrosion on heat exchanger tubes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001666
EISBN: 978-1-62708-229-7
... deposits and in the bore deposits towards the inlet side. Phosphates and nitrates were not found except for a small amount of phosphate in the bore inlet area. The next series of analyses involved the adherent inner layers of deposit stripped from the surface by acetate replicas. Since these deposits...
Abstract
Stress-corrosion cracking of low-alloy steel turbine discs has emerged as a generic concern in nuclear generating stations. An investigation that made extensive use of field metallographic techniques to examine suspected cracking in such a component is described. The crack position, and its relationship to surface topographic features, were examined and recorded by magnetic rubber and high-resolution dental rubber replicating materials. Corrosion deposits on keyway surfaces and within the crack were collected with acetate foil replicas applied and then stripped from the keyway surfaces. Microstructural details were revealed by the use of field metallographic preparation techniques and replicated by acetate foil for examination with optical and scanning electron microscopes. It was possible by these techniques to establish the cracking mechanism as stress corrosion possibly related to chloride or sulphate ion steam contaminants. Subsequent sectioning and conventional metallography confirmed both the validity of the conclusions and the replication techniques.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... dimensions to the 1 to 100 nm range, for example, fibers Two-dimensional (2D): when one coordinate is confined, for example, layered fillers Three-dimensional (3D): when there is no confinement of any dimension, for example, particulate fillers 1D Filler The 1D fillers have confinement...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001323
EISBN: 978-1-62708-215-0
... hydroxide, environment UNS S31600 316 ASME SA106 B Stress-corrosion cracking Background Applications The superheater tube U-bends were part of a waste heat boiler system that produced steam at 2.07 MPa (300 psi) and 274 °C (525 °F). The steam was used in various processes in a phosphate...
Abstract
Original carbon steel and subsequent replacement austenitic stainless steel superheater tube U-bend failures occurred in a waste heat boiler. The carbon steel tubes had experienced metal wastage in the form of caustic corrosion gouging, while the stainless steel tubes failed by caustic-induced stress-corrosion cracking. Sodium was detected by EDS in the internal deposits and the base of a gouge in a carbon steel tube and in the internal deposits of the stainless steel tube. The sodium probably formed sodium hydroxide with carryover moisture and caused the gouging, which was further aggravated by the presence of silicon and sulfur (silicates and sulfates). It was recommended that the tubes be replaced with Inconel 600 or 601, as a practical option until the carryover problem could be solved.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... sulfide or chloride ions under conditions in which repassivation is hindered. Normally, it is protected by a passive oxide layer. However, chloride ions have the power to penetrate the oxide film, causing local breakdown of passivity and the formation of an anodic site. Repassivation occurs...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
..., the investigator should ensure that results, regardless of whether they were obtained using quantitative of qualitative techniques, are not obscured by any surface coatings, platings, carburized layers, contamination, or any other factor that would interfere. Surface treatments such as carburizing and nitriding...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
.... The problems of installation and maintenance are much more acute in corrosion failures of refractories than technical ceramics, simply because of the sizes and volumes considered in each case. Refractory problems occur often in large units involving two (or even three) layers of linings of different...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... process that not only depends on the contact materials but also on the whole contact system. A key aspect concerns the debris layer (also called third body or debris bed). Entrapped within the interface, debris greatly influences both friction and wear processes ( Fig. 17 ). This is particularly evident...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
1