Skip Nav Destination
Close Modal
Search Results for
petroleum plants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 52 Search Results for
petroleum plants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... of a chemical plant at a tropical location developed several hundred leaks soon after startup. Applications Hydrotesting of new pipework and reservoirs in the petroleum industry and in chemical processing plants is conveniently achieved by using water pressure. A pump is used to force water through...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048835
EISBN: 978-1-62708-220-4
... vessel satisfied certain time constraints on the allowable down time for the plant. Reference Reference 1. Bird D.B. , “Cracking in Carbon 1 2 Moly Desulfurizer Reactor Welds” , paper presented at the 1985 Fall Meeting of the American Petroleum Institute Operating Practices...
Abstract
Welds in two CMo steel catalytic gas-oil desulfurizer reactors cracked under hydrogen pressure-temperature conditions that would not have been predicted by the June 1977 revision of the Nelson Curve for that material. Evidence of severe cracking was found in five weld-joint areas during examination of a naphtha desulfurizer by ultrasonic shear wave techniques. Defect indications were found in longitudinal and circumferential seam welds of the ASTM A204, grade A, steel sheet. The vessel was found to have a type 405 stainless steel liner for corrosion protection that was spot welded to the base metal and all vessel welds were found to be overlaid with type 309 stainless steel. Long longitudinal cracks in the weld metal, as well as transverse cracks were exposed after the weld overlay was ground off. A decarburized region on either side of the crack was revealed by metallurgical examination of a cross section of a longitudinal crack. It was concluded that the damage was caused by a form of hydrogen attack. Installation of a used Cr-Mo steel vessel with a type 347 stainless steel weld overlay was suggested as a corrective action.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001280
EISBN: 978-1-62708-215-0
... Abstract An HK-40 alloy tubing weld in a reformer furnace of a petrochemical plant failed by leaking after a shorter time than that predicted by design specifications. Leaking occurred because of cracks that passed through the thickness of the weldment. Analysis of the cracked tubing indicated...
Abstract
An HK-40 alloy tubing weld in a reformer furnace of a petrochemical plant failed by leaking after a shorter time than that predicted by design specifications. Leaking occurred because of cracks that passed through the thickness of the weldment. Analysis of the cracked tubing indicated that the sulfur and phosphorus contents of the weld metal were higher than specified, the thickness was narrower at the weld, and the mechanical resistance of the weld metal was lower than specified. Cracking initiated at the weld root by coalescence of creep cavities. Propagation and expansion was aided by internal carburization. Quality control of welding procedures and filler metal was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001512
EISBN: 978-1-62708-228-0
..., again a brittle crack was initiated at a horizontal weld defect and propagated vertically, destroying the tank and the liquefaction plant. The initiation site was a thumbnail elliptical crack in a horizontal weld, having a depth of 1.5 mm, and a length of 4.5 mm. This showed that as late the mid-1970s...
Abstract
When a large LPG low-carbon steel storage tank was put into service for the first time and filled beyond the proof testing level, a brittle fracture crack initiated at a fillet weld between a stiffener ring and the wall. The crack propagated to a length of 5.5 m and arrested. Analysis showed that the plates satisfied the criteria of BS 4741. It was concluded that the cause of crack initiation was the lack of a mouse hole at the junction between the stiffening ring and the wall of the tank. The tank was repaired and put back in service. When it was filled beyond the proof test level, again a brittle crack was initiated at a horizontal weld defect and propagated vertically, destroying the tank and the liquefaction plant. The initiation site was a thumbnail elliptical crack in a horizontal weld, having a depth of 1.5 mm, and a length of 4.5 mm. This showed that as late the mid-1970s, misunderstanding of brittle fracture led to the wrong design and construction of an LPG storage tank. The best design specification is to use a correlation between LAST, the Lowest Anticipated Service Temperature, and the DBTT measured by either Charpy tests or DTT.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... to exhaustion of life, thus leading to failure. Damage may be defined as a “progressive and cumulative change acting to degrade the structural performance of the load-bearing component or components which make up the plant” ( Ref 2 ). Life may be defined as the “period during which a component can perform its...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
.... However, there have been relatively few examples of such failures having occurred in service. One case has been described of mercury-induced cracking of aluminum alloy piping in a natural gas processing plant ( Ref 5 ). As-produced natural gas from the wells was cryogenically treated to remove higher...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... to gas turbine blades and power plant piping. Design, operation, and failure analysis of metallic components and structures operating at elevated temperatures requires additional considerations that are not pertinent at lower temperatures. Elevated temperature is a relative term, depending...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... by mercury is an easily studied model system and has been the subject of much research. However, there have been relatively few examples of such failures having occurred in service. One case has been described of mercury-induced cracking of aluminum alloy piping in a natural gas processing plant ( Ref 6...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
... conference on environment-induced cracking of metals , Banff, Alta , 19–23 September, 2004 , (Elsevier, Amsterdam, 2008), pp. 401 – 410 10.1016/B978-008044635-6.50076-5 2. Gutzeit J. , Merrick R.D. , Scharfstein L.R. , Corrosion in petroleum refining and petrochemical operations...
Abstract
A ring-type joint in a reactor pipeline for a hydrocracker unit had failed. Cracks were observed on the flange and the associated ring gasket during an inspection following a periodic shutdown of the unit. The components were manufactured from stabilized grades of austenitic stainless steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused the formation of polythionic acid in the process gas.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... to seawater were shown to increase with increasing levels of sulfide in either biotic or abiotic environments ( Ref 84 ). As previously noted, NRB have initiated SCC failures in admiralty brass condenser tubes in a nuclear plant cooled by freshwater through production of ammonia ( Ref 64 ). Failure...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... Abstract Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed...
Abstract
Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed in service some years previously. The failed pressure vessel, with a diam of 2.5 m and several meters tall, had been made of 12 mm thick IZETT steel plate of the same type and heat treatment as used in the earlier fitness-for-purpose already measured. Examination of the fracture surfaces suggested, from fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded realistic critical flaw sizes (in the range 51 to 150 mm). These sizes were consistent with the limited fracture surface observations and such flaws could well have been present in the vessel dome prior to catastrophic failure. For similar pressure vessels, an inspection program based on a leak-before-break philosophy was consequently regarded as acceptable.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001395
EISBN: 978-1-62708-220-4
... be readily removed by solution heat treatment in the range 1000°–1120°C followed by rapid cooling. BS 1515 part 2 — “Specification for Fusion Welded Pressure Vessels for use in the Chemical, Petroleum and Allied Industries” requires this treatment for austenitic stainless steels that have been heavily cold...
Abstract
Leakage which developed from two storage vessels handling a mixture of trimethyl formate and chloroform took place from the dished head at the edge of the circumferential weld to the shell which incorporated a backing ring. Some shallow pitting had occurred under the backing ring on the shell side behind the tack welds securing the backing strip to the shell. Intermittent pitting had also occurred along the head side of the weld at the other end the vessel. There was no pitting along the main longitudinal weld of the shells in any vessel nor around any of the branches set into the shells. The material of the original vessels was specified as BS 970 - 1966. En 58J. Sections taken through pitted areas from both head welds showed preferential attack along the grain-boundaries, some grains becoming completely detached. The location of the pitting and preferential attack was at such a distance from the weld that the heat of welding could have raised the metal temperature to 550 to 700 deg C (1292 deg F). The corrosion of the shell material which occurred at the shell side of the weld under the backing ring is also an example of crevice corrosion.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... of life, thus leading to failure. Damage may be defined as a “progressive and cumulative change acting to degrade the structural performance of the load-bearing component or components which make up the plant” ( Ref 2 ). Life may be defined as the “period during which a component can perform its intended...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... Recommended Practice 571, American Petroleum Institute , Washington, D.C. , 2011 2. Macejko B. , Is Your Plant Vulnerable to a Brittle Fracture? Hydrocarbon Processing , Gulf Publishing Company , Houston, TX , Nov 2014 3. Rules for Construction of Pressure Vessels, Section VIII...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
..., in an ore chute in a minerals processing plant, where moist ore particles slide on an inclined platform, chute, or screen. Figure 1 shows a worn wire-cloth screen in a minerals processing plant. Another example is a submerged valve that opens and closes to control the flow of material. Here, the parts...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... collapse. In steam plants, the components most often damaged by cavitation erosion are feed lines, pump casings, and pump impellers. Figure 12 shows the typical appearance of a part extensively damaged by cavitation erosion; the surface is deeply and irregularly pitted. Fig. 12 Cast iron suction...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... Abstract This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
...) mechanical integrity requirements and American Petroleum Institute (API) inspection requirements. A knowledge base of equipment failures is also a useful input into a plant mechanical integrity program, with the aim of continual reliability improvement. Objectives of a Failure Analysis The objectives...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
... was used by the American Petroleum Institute to design offshore structures ( Ref 16 ). The most significant changes since 2002 have been the development and application of probabilistic analysis methods in predicting the system reliability of structural and mechanical systems in time-variant...
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.