1-15 of 15 Search Results for

permanent mold casting alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
...Abstract Abstract In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
... Alloy Permanent Mold Casting Alloy Material Specification , Standard No. IK-150-11-1-0014 ( 2007 ) 3. Test Method for Brinell Hardness Test of Metallic Materials , Standard No. ASTM E10-06 ( 2006 ) 4. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials , vol. 2 . ASM...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... causing a localized seam Oxide inclusion or skins, seams G 143 (a) Folded films of graphitic luster in the wall of the casting Lustrous carbon films, or kish tracks G 144 Hard inclusions in permanent molded and die cast aluminum alloys Hard spots (a) Defects that under some...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001543
EISBN: 978-1-62708-218-1
... . Because this material is extremely abrasive, it damaged both piston and cylinder walls when rubbing between them. The coarse grain size of the structure is an effect of permanent mold casting, and there was no evidence of grain growth due to high temperatures. Inasmuch as the surface temperatures were...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... spacing. Source: Ref 3 Fig. 20 Dimples in the ductile fracture surface of a permanent mold cast A356 Al-alloy Fig. 16 Counting frame for unbiased counting number of features. Source: Ref 94 Fig. 21 Fatigue striations in a cast A356 aluminum alloy. (a) 500×. (b) 1500...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... the Ingot Many flaws in wrought products can be traced back to the pouring and solidification of hot metal in molds during production of ingot. Except for forged powder metal components, the starting material in bulk working is a slab, ingot, billet, and so forth produced by casting into stationary...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001591
EISBN: 978-1-62708-227-3
... the casting, care was taken to shield the molten steel from contact with the atmosphere. A tundish located directly above the continuous casting mold trapped inclusions and slag that floated in the molten stream of steel. The slabs were heated to the desired rolling temperature to produce a plate 1.25 cm...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
..., stainless steel, age-hardening aluminum alloys, etc.), its general product form (e.g., wrought, cast, powder metallurgy, etc.), and the processing method (e.g., forged, die cast, injection molded, etc.). All of these factors must be considered when the shape of a part is defined during configuration design...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., such as magnesium or zinc, may be introduced into the galvanic assembly. The most active member will corrode while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... preferentially while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection is often used for the protection of underground or underwater steel structures. The use...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... Throttling of valve by the operator outside of the design parameters Flow gages and records Operator logs Low-strength copper nickel alloy construction Material specifications Laboratory analysis Flow-induced cavitation Rumbling noise in system Vibration of system Failure mechanism Erosion...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... alloy construction Material specifications Laboratory analysis Flow-induced cavitation Rumbling noise in system Vibration of system Failure mechanism Erosion-fatigue damage Laboratory examination of disk, thinning Consequences Inability to manufacture at normal production rates...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
...Abstract Abstract This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... in castings, forgings, wrought alloys, or weldments. These defects are caused by the presence of excessive hydrogen in the liquid melt prior to solidification. Microperforation may also occur, mainly when steels are exposed to very high-pressure hydrogen near room temperature. Hydrogen-induced blistering...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... attack Steels subject to combined high-temperature and high-pressure hydrogen. Also affects copper Irreversible chemical reactions of hydrogen with matrix or alloy elements form high-pressure pockets of gases other than molecular hydrogen. Cracking from hydride formation Transition, rare earth...