1-20 of 34 Search Results for

peel pits

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2019
Fig. 3 Surface damage morphology of main shaft ( a ) showing serious circumferential wear marks and ( b ) showing serious peel pits More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
... chromium steel circumferential wear marks peel pits heat tinting fatigue striations SEM imaging fatigue strength 42CrMo (chromium-molybdenum alloy steel) 38CrMoAl (chromium-molybdenum-aluminum alloy steel) Background A locomotive turbocharger main shaft and a bearing sleeve assembled...
Image
Published: 01 December 2019
Fig. 1 Service-exposed Reheater tube ( a ) appearance of failure tubes, with deposit on fire-side and inner oxide scale peeling off, ( b ) pits on outside surface, and ( c ) Cross section micrograph of the inner oxide scale detected by SEM More
Image
Published: 01 January 2002
cracks initiating and propagating from fiber to fiberith pits formed due to graphite extraction and fiber consumption, back transfer of molten polymer from the disc to the pin surface (patches in the left portion of the micrographs) ( L , 132 N; V, 1 m/s) (f–h) Worn surfaces of PEI GF + gf + PTFE + MoS 2 More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... of the diameter and lengthwise stretching—before the final break ( Fig. 4 ). This is often accompanied by “orange peel,” in which each grain deforms in a slightly different manner. Orange peel is a result of a distribution of grain orientations, and it produces a rough appearance in originally smoothly machined...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
... was observed on the outer surface of the tube. The inner surface had a uniform dark gray oxide layer, which was wrinkled and peeling off. Fig. 1 Service-exposed Reheater tube ( a ) appearance of failure tubes, with deposit on fire-side and inner oxide scale peeling off, ( b ) pits on outside surface...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
.... Relation to Environment In observing locations of crack nucleation, the possibility of environment-related mechanisms—including pitting corrosion, stress-corrosion cracking, and other effects of a hostile environment—must be considered. For example, a great number of fatigue failures in otherwise...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... or shrink fits. Shafts often break at edges of press-fitted or shrink-fitted members, where high degrees of stress concentration exist. Such stress concentration effectively reduces fatigue resistance, especially when coupled with fretting. Metallurgical stress raisers may be quench cracks, corrosion pits...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... 58 HRC, resistance to pitting fatigue is reduced, and the possibility of brinelling (denting) of bearing raceways is increased. Because hardness decreases with increasing operating temperature, the conventional materials for ball and roller bearings can be used only to temperatures of approximately...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001848
EISBN: 978-1-62708-241-9
... of the die was covered with fatigue cracks and many fillets had been plastically deformed. Several other types of damage were also observed, including areas of oxidation, corrosion pits, voids, abrasive wear, die adhesion, and thermal fatigue. Fatigue cracking was the primary cause of failure...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006937
EISBN: 978-1-62708-395-9
... for other surface geometries, and the ASTM standard (D 637) was discontinued in 1995. Microscopic Surface Irregularities Microscopic surface irregularities are usually measured by a microscope or a profilometer. They tend to fall into three categories: scratches, digs (or pits), and a mottled surface...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... segregation Ingot pipe, porosity, and centerline shrinkage High hydrogen content Nonmetallic inclusions Unmelted electrodes and shelf Cracks, laminations, seams, pits, blisters, and scabs Chemical Segregation The elements in a cast alloy are seldom distributed uniformly. Even unalloyed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... or shrink-fitted members, where high degrees of stress concentration exist. Such stress concentration effectively reduces fatigue resistance, especially when coupled with fretting. Metallurgical stress raisers may be quench cracks, corrosion pits, gross nonmetallic inclusions, brittle second-phase particles...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... cause the passive layer on the surface of the metal to be locally thinned, allowing pitting or grain boundary corrosion to start. This corrosion pit or trench, produced by chemical attack on the metal surface, may act as a stress raiser and thus serve as a site for initiation of SCC. A preexisting...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
... a smooth metal. Increase in load and speed results in higher wear of FRP through different mechanisms. High load results in more fiber cracking and pulverization leading to deterioration in load carrying capacity, while high speed accelerates the debonding of fibers/fillers. This results in easy peeling...