Skip Nav Destination
Close Modal
Search Results for
pack cementation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
pack cementation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046998
EISBN: 978-1-62708-232-7
... in.). Failure occurred where the tube passed through the refractory hearth (floor) of the furnace. When the furnace was examined, large amounts of soot were observed at various locations, especially on the hearth near the vertical tubes and covering the refractory-cement packing that sealed the tubes...
Abstract
One of 14 vertical radiant tubes (RA 333 alloy) in a heat-treating furnace failed when a hole about 5 x 12.5 cm (2 x 5 in.) corroded completely through the tube wall. The tube measured 183 cm (72 in.) in length and 8.9 cm (3 in.) in OD and had a wall thickness of about 3 mm (0.120 in.). Failure occurred where the tube passed through the refractory hearth (floor) of the furnace. Although the furnace atmosphere was neutral with respect to the work, it had a carburizing potential relative to the radiant tubes. Analysis (visual inspection, 250x spectroscopic examination of specimens etched with mixed acids, metallographic examination, and chemical analysis) supported the conclusions that the premature failure of the tube by perforation at the hearth level resulted from (1) corrosion caused by sulfur contamination from the refractory cement in contact with the tube and (2) severe local overheating at the same location. Recommendations included replacing all tubes using a low sulfur refractory cement in installation and controlling burner positioning and regulation more closely to avoid excessive heat input at the hearth level.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001516
EISBN: 978-1-62708-234-1
..., or of a continuous thin film. For higher storage density the particles are of submicron size and densely packed. They are held on a substrate by an organic resinous binder and dispersed uniformly in the mix by additions of organic dispersants. Aluminum or chromium oxide particles are added to keep the head clean...
Abstract
This paper deals with disk drive failures that occur in the interface area between the head and disk. The failures often lead to the loss of stored data and are characterized by circumferential microscratches that are usually visible to the unaided eye. The recording media in disk drives consists of a metal, glass, ceramic, or plastic substrate coated with a magnetic material. Data errors are classified as ‘soft’ or ‘hard’ depending on their correctability. Examination has shown that hard errors are the result of an abrasive wear process that begins with contact between head and disk asperities. The contact generates debris that, as it accumulates, increases contact pressure between the read-write head and the surface of the disk. Under sufficient pressure, the magnetic coating material begins wearing away, resulting in data loss.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... prostheses are anchored by using a bone cement in a bed that has been mechanically prepared in the remaining bone. Recently, various designs have been developed for the cementless anchoring of prostheses by a tight fit. Certain prosthesis systems have porous surface coatings on their shafts to increase...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... of mixed behavior was created based on results (rounded silica sand of 0.1 to 0.3 mm, or 0.004 to 0.01 in., diameter; 61 m/s, or 200 ft/s, velocity) obtained for WC-15wt%Co cemented carbide consisting of brittle tungsten carbide grains and ductile cobalt matrix ( Ref 49 ). Erosion of a given material...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... due to stress corrosion. For hexagonal close-packed metals, the dislocation structure and cyclic behavior are more sensitive to crystal orientation than are cubic metals because their anisotropic properties produce diverse microfractographic features. [ 35 – 37 ] Fig. 3 Scanning electron...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
..., particularly if packing is used. It is good practice to use hard metal or ceramic expellers near seal entrances to keep particles out of the sealing clearance. If thorough flushing of packing presents a design problem, abrasion-resistant SiC ceramic mechanical seals together with an expeller or minimal...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001715
EISBN: 978-1-62708-219-8
.... A slurry coat was deposited beneath the wire during wrapping, and a cement mortar coat was shotcreted over the wire. The slurry and mortar coatings were designed to protect the wire from handling damage and corrosion. In 1990, surveys by the Bureau of Reclamation indicated that there was corrosion...
Abstract
Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels, and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general corrosion, where the cross section of the wire is reduced until the strength of the wire is exceeded. Most of the failures evaluated were attributed to stress-corrosion cracking.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... be the top priority for the design team, not the concept with the shortest development timeline or lowest development cost. Conceptual Design Review Once the solution ideation and analysis are completed, a concept design review should be conducted. This will cement the suitability of the ideal concept...
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
...-centered cubic (bcc) structure, deformation generally is strain-rate sensitive. Thus, their reaction to cavitation is always a competition between flow and fracture. When pure iron is subjected to cavitation, it exhibits both brittle and ductile failure mechanisms. For hexagonal close-packed (hcp...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... use. Photoelastic coatings have also been used for laboratory stress measurements. For this technique, a birefringent coating of controlled thickness is bonded to the testpiece with a reflective cement. Optical analysis is similar to conventional analysis but requires special equipment...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
..., polymer cement can be added between the bone and the metallic femoral stem. However, significant fretting wear phenomena can still take place, inducing the loosening of the entire total hip joint prosthesis. Note that the development of modular-design hip joints involving numerous interfaces tends...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4