Skip Nav Destination
Close Modal
Search Results for
oxide flakes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 86
Search Results for oxide flakes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed...
Abstract
Two clamps that support overhead power lines in an electrified rail system fractured within six months of being installed. The clamps are made of CuNiSi alloy, a type of precipitation-strengthening nickel-silicon bronze. To identify the root cause of failure, the rail operator led an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed. The investigation results suggest that the root cause of failure was a forging lap that occurred during manufacturing. Precracks induced by the forging defect and the influence of preload stress (due to bolt torque) caused the premature failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001492
EISBN: 978-1-62708-235-8
... Abstract Electroless nickel plating separation from copper alloy CDA175 retaining clips used on printed circuit boards was caused by a copper oxide layer that reduced adhesion of the nickel plating on the clips. Stresses that developed during module insertion caused flaking to occur...
Abstract
Electroless nickel plating separation from copper alloy CDA175 retaining clips used on printed circuit boards was caused by a copper oxide layer that reduced adhesion of the nickel plating on the clips. Stresses that developed during module insertion caused flaking to occur at the oxidized copper surface. Electroless nickel plating separation from OFHC copper leads was caused by improper handling rather than a plating anomaly per se. Tin plating separation from copper underplating on a hybrid package lid occurred because of a four-week delay between the copper plating and tin plating steps. It was recommended that tin plating should follow the copper underplating within 24 h and a cleaning step of bright dipping after copper plating be performed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
..., conversion of chlorides to sulfates, preferential stabilization of chlorides at the oxide/metal interface, and oxide flaking. X-ray diffraction analysis of the corrosion products confirmed the presence of the alkali salt species mentioned above, as well as alkali chromates, in addition to Cr 2 O 3 , Fe 2...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001182
EISBN: 978-1-62708-218-1
... the scale has flaked off. Furthermore, the rim of the disk was badly damaged by secondary mechanical action. The core of the valve had a very fine austenitic microstructure with precipitations of numerous granular and very fine, mostly rounded carbides and tine segregation bands. A hard alloy facing...
Abstract
A broken exhaust valve from the cylinder of a motor car had a 30-mm disk diam and 8-mm stem diam. The site of the fracture was directly where the valve cone joined the cylindrical stem. Both the cone and the stem were heavily scaled in the vicinity of the fracture; in some parts the scale has flaked off. Furthermore, the rim of the disk was badly damaged by secondary mechanical action. The core of the valve had a very fine austenitic microstructure with precipitations of numerous granular and very fine, mostly rounded carbides and tine segregation bands. A hard alloy facing was welded on to the valve seat. Fracture was a consequence of fatigue corrosion cracking, itself strongly promoted by the presence of sulphur compounds. The origin of these corrosive sulphur compounds could not be explained.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
... Abstract A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness...
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
... the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear...
Abstract
A sand-cast gray iron flanged nut was used to adjust the upper roll on a 3.05 m (10 ft) pyramid-type plate-bending machine. The flange broke away from the body of the nut during service. Analysis (visual inspection and 150x micrographs of sections etched with nital) supported the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear to have had significant effects on the fracture. Recommendations included carefully and properly aligning the flange surface with the roll holder to achieve uniform distribution of the load. Also, a more ductile metal, such as steel or ductile iron, would be more suitable for this application and would require less exact alignment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
... liquids, and stray electric currents. Most common modes of failure include flaking or pitting (fatigue), cracks or fractures, creep, smearing, wear, softening, indentation, fluting, and corrosion. The modes of failure are illustrated with examples from practice. Roller bearings Rolling-bearing...
Abstract
Factors which may lead to premature roller bearing failure in service include incorrect fitting, excessive pre-load during installation, insufficient or unsuitable lubrication, over-load, impact load vibration, excessive temperature, contamination by abrasive matter, ingress of harmful liquids, and stray electric currents. Most common modes of failure include flaking or pitting (fatigue), cracks or fractures, creep, smearing, wear, softening, indentation, fluting, and corrosion. The modes of failure are illustrated with examples from practice.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001026
EISBN: 978-1-62708-214-3
... the flake surfaces were not noticeably oxidized, conditions were probably favorable for spotty sintering of the touching crack faces. The very small amount of fatigue crack propagation observed probably did not contribute to the overall fracture process. It is more likely that a single, exceptionally...
Abstract
Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth was cleavage, probably caused by cast-in hydrogen. The intergranular appearance resulted from heat treatment of the already cracked part, which caused the formation of grain-boundary “growth figures” on the exposed crack surfaces. It was recommended that the castings be more closely inspected for defects before further processing and that foundry practices be reviewed to correct deficiencies leading to excessive hydrogen absorption during melting and casting.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001050
EISBN: 978-1-62708-214-3
... flakes in an iron matrix, typical of gray cast iron. Etching in 2% nital revealed a bainite matrix with scattered massive carbides ( Fig. 7 ). Fig. 6 Micrograph showing graphite flakes characteristic of gray cast iron. Unetched. 64×. Fig. 7 Micrograph of the same area shown in Fig. 6...
Abstract
A steam-pressurized Yankee dryer shell ruptured during normal operation. Cracking had occurred around much of the circumference at the drive end of the shell, which measured 3.7 m (12 ft) in diameter by 3.4 m (11 ft) long with a head bolted to each end. The crack initiated at a 90 deg corner in contact with the edge of the head. The material was a hardened gray cast iron containing 2.8% Ni and 1.2% Mo. Based on the results of visual, nondestructive, metallographic, and chemical analyses, it was concluded that failure occurred after corrosion fatigue cracking had weakened the shell. An ultrasonic examination of all Yankee dryers of the same type was recommended to look for cracking at the edge of the shell. Modification of the head-to-shell joint was recommended as well.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... temperature of the lubricant, which is 205 to 230 °C (400 to 450 °F) for the synthetic lubricants that are widely used at elevated temperatures. Molybdenum high-speed tool steels, such as M1, M2, and M10, are suitable for use to about 425 °C (800 °F) in oxidizing environments. Grades M1 and M2 maintain...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
... was an alloy-depleted zone containing gray globules of chromium sulfide adjacent to the normal IN-713 structure. These corrosion products did not readily flake from the surface of the blade, because of the composition of the mixed oxides and that of the alloy-depleted base metal. Fig. 1 Uncoated...
Abstract
Aluminide-coated and uncoated IN-713 turbine blades were returned for evaluation after service in a marine environment because of severe corrosion. Based on service time, failure of these blades by corrosive deterioration was considered to be premature. Analysis (visual inspection, 2.7x micrographic examination on sections etched with ferric chloride and hydrochloric acid in methanol) supported the conclusions that the blades failed by hot-corrosion attack. Variation in rate of attack on coated blades was attributed to variation in integrity of the aluminide coating, which had been applied in 1966, when these coatings were relatively new. It is evident that maintaining the integrity of a protective coating could significantly increase the life of a nickel-base alloy blade operating in a hot and corrosive environment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001253
EISBN: 978-1-62708-235-8
... of primary grain boundary cracks in cast ingots. Cracking (fracturing) Crankshafts Flakes (defects) Forging Ingots CK 45 Intergranular fracture Metalworking-related failures Hydrogen damage and embrittlement Octagonal cast ingots weighing 6.5 tons and made of unalloyed heat treated steel...
Abstract
Octagonal cast ingots weighing 6.5 tons and made of unalloyed heat treated steel CK 45 according to DIN 17200, and crankshafts forged from these ingots showed internal separations during ultrasonic testing. To determine the cause of defect, an ingot slice and a crank arm were examined metallographically. Investigation showed this was a case where flaky forgings were made from cast ingots with primary grain boundary cracks. This parallelity supports the often expressed opinion that both occurrences have the same origin, i.e. that hydrogen precipitation was the driving force in the formation of primary grain boundary cracks in cast ingots.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
... at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas...
Abstract
During natural gas drilling in the EMS region in 1956, considerable numbers of longitudinal cracks and transverse fractures occurred in the connecting pieces of the bore rods. The connectors were screwed onto the rods by means of a fine thread and tightly joined with it by shrinkage at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas was the cause of damage. Hydrogen liberated by reaction with the iron caused the formation of iron sulfide after penetration of the steel, which had an explosive effect during molecular separation under high pressure. This in turn caused the crack formation in conjunction with the external and residual stresses.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
...) for the synthetic lubricants that are widely used at elevated temperatures. Molybdenum high-speed tool steels, such as M1, M2, and M10, are suitable for use to approximately 425 °C (800 °F) in oxidizing environments. Grades M1 and M2 maintain satisfactory hardnesses to approximately 480 °C (900 °F...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
.... For example, a zirconium oxide abrasive is often used to prepare steels for this type of analysis, because zirconium is rarely specified in steels. Thus, if a small piece of zirconium oxide does get embedded in the metal, it will not affect the analysis. The actual size of the “small chunk” required...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001005
EISBN: 978-1-62708-215-0
..., revealed that fatigue crack initiation occurred from the tip of oxide scale inclusions forged into the U-shaped arm at the inside radius. Corrective action involved redesigning the steering arm to increase the minimum forging radius and reduce the stress level at the inner-bend radius, and reducing...
Abstract
Several heavy truck Cr-Mo steel steering arms in service less than three years fractured during stationary or low-speed turning maneuvers that required power-assisted steering. Metallographic examination of the cracked AISI 4135 arms, heat treated to a hardness of 285 to 341 HB, revealed that fatigue crack initiation occurred from the tip of oxide scale inclusions forged into the U-shaped arm at the inside radius. Corrective action involved redesigning the steering arm to increase the minimum forging radius and reduce the stress level at the inner-bend radius, and reducing the level of power assistance to the wheels to encourage the driver to put the vehicle in motion prior to turning.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001704
EISBN: 978-1-62708-218-1
... metallurgist or metallographer is certainly familiar with the phenomenon known as microbiologically influenced corrosion, or MIC. However, many new to the field may be surprised to learn that there are microorganisms that can actually corrode metal via iron-oxidizing or sulfur-reducing processes. MIC...
Abstract
Several type 304 stainless steel fire truck water tanks developed through-wall leaks after being in service for approximately two years. One representative tank underwent a comprehensive laboratory analysis, which included metallographic examinations and chemical analyses. The examinations revealed a classic case of microbiologically influenced corrosion (MIC), which preferentially attacked the heat affected zones of the tank welds, resulting in the leaks.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... by gaseous hydrogen on the crack front. For example, when steel is saturated with hydrogen at elevated temperature and then is cooled, gaseous hydrogen precipitates in microvoids, and an extremely high pressure of the gas can be developed. Flakes in heavy forgings and underbead cracks in weldments can...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... precipitates in microvoids, and an extremely high pressure of the gas can be developed. Flakes in heavy forgings and underbead cracks in weldments can be explained by the pressure theory. Hydrogen charged into steel during aqueous corrosion or cathodic charging can also produce a very high pressure...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... performed at room temperature or at elevated temperatures, makes them common sources of surface discontinuities, such as laps, seams, and cold shuts. Oxides, slivers or chips of the base material, or foreign material also can be embedded into the surface during working. These surface imperfections produce...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
1