1-20 of 350 Search Results for

overload

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090971
EISBN: 978-1-62708-222-8
...Abstract Abstract A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
...Abstract Abstract Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0090943
EISBN: 978-1-62708-219-8
... and hardness testing, 119x SEM images, and potassium dichromate etched 297x metallographic images) supported the conclusion that the bronze gear cracked via mixed-mode overload, rather than by a progressive mechanism such as fatigue or stress-corrosion cracking. The cracking was not associated with regions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001501
EISBN: 978-1-62708-221-1
... was continuous high overload that may also have contributed to the bearing displacement. Bearings Bevel gears Differential gears Displacement Lift trucks Mechanical drives 4820H UNS H48200 Fatigue fracture Rolling-contact wear A spiral bevel gear and pinion set that showed “excessive wear...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
...Abstract Abstract This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
... fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047321
EISBN: 978-1-62708-224-2
... from overload caused by thermal contraction. (a) Schematic of the clutch/brake drum assembly. Dimensions given in inches. (b) Heat checks on the surface of the drum. (c) A fracture surface of the drum showing regions affected by heat checking (A) and final-fracture region (B) During haul...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
... fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047315
EISBN: 978-1-62708-225-9
... the conclusions that brittle fracture of the flange from the body was the result of overload caused by misalignment between the flange and the roll holder. The microstructure contained graphite flakes of excessive size and inclusions in critical areas; however, these metallurgical imperfections did not appear...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001672
EISBN: 978-1-62708-236-5
...) that was the source of each crack. The fracture of the oil quenched and tempered (HRC 50 ASTM A229) spring was by stress-corrosion cracking after the crane fell into the sea because fatigue cannot account for the fractures observed. The crane failure was caused by an overload created by the operator catching a free...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
... (and perhaps also affecting the load distribution in the right-hand side rail to put the stem of T-section A in tension as well). T-section C became overloaded and bent, then fracture originated at the edge of the stem near a stress concentration at a rivet hole and propagated toward the flange. The rapid...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
... that intergranular cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
...°. Investigation Conclusions Corrective Measure Selected Reference Selected Reference • Miller B.A. , Overload Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 671 – 699 10.31399/asm.hb.v11.a0003543 Visual examination disclosed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091096
EISBN: 978-1-62708-234-1
...Abstract Abstract A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
...Abstract Abstract A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001537
EISBN: 978-1-62708-234-1
... the exact mode of fracture. Electron fractography revealed that five different modes of crack growth were operative as the part failed. Region 1 was a shallow zone (about 0.002 in. at its deepest) of dimpled structure typical of an overload failure. Region 2 was a zone that grew by a stress corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089338
EISBN: 978-1-62708-224-2
...Abstract Abstract A steel lifting eye, manufactured from grade 1144 steel, failed during service. The eye ring fractured in two places, adjacent to the threaded shank and diametrically opposite to this region. Woody overload features, typical for resulfurized steels were revealed by SEM...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
... overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090457
EISBN: 978-1-62708-222-8
..., 59x SEM images, micro-FTIR in the ATR mode, and DSC/TGA/MFR analysis) showed no evidence of contamination or degradation from the molding process. The conclusion was that the parts failed via brittle fracture associated with stress overload. The stress overload was accompanied by severe apparent...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001373
EISBN: 978-1-62708-215-0
... purposes. One of the valves failed by dezincification. The porous copper matrix could not sustain the clamping loads imposed by tightening the pressure relief fitting. The second valve failed by shear overload of the pressure relief fitting. Overload was facilitated by a reduction of cross-sectional area...