1-20 of 22 Search Results for

overaging

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
... stresses. The fracture of the second elbow near the flange was caused by overaging during repair welding of the boss weld. Satisfactory weld penetration was achieved by improved training of the welders plus more careful inspection. Repair welding was prohibited, to avoid recurrence of overaging from...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001543
EISBN: 978-1-62708-218-1
... problems. The temperature in much of the piston was high enough to cause softening by overaging, lowering strength. Automotive engines Overheating Pistons Softening 357 UNS A03570 Thermal fatigue fracture Mixed-mode fracture High-temperature corrosion and oxidation The sustained high...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture. aircraft landing gear intergranular fracture overaging cast aluminum-zinc alloy shrinkage porosity fractographic analysis optical emission spectroscopy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001670
EISBN: 978-1-62708-217-4
... martensite (HRC 55) completely reaustenitizes, and then transforms to unaged (virgin) martensite (HRC 30) upon cooling to room temperature. In the region between AT D and ST D there are several transformations which occur: (1) overaged martensite of decreasing hardness forms as the temperature increases...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... metallurgical instabilities, such as transgranular-intergranular fracture transition, recrystallization, aging or overaging (phase precipitation or decomposition of carbides, borides, or nitrides), intermetallic-phase precipitation, delayed transformation to equilibrium phases, order-disorder transition...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
... of the precipitation-hardening alloys or by tempering at elevated temperature. The large decrease in yield strength at elevated temperatures is due to overaging in the maraging steel and to overtempering in H19, British I steel, and 4337V. Tensile tests revealed the following order of decreasing ductility: maraging...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
..., such as void formation, the precipitation of new phases, dissolution or growth of desired phases, grain growth, and so on. A sharp change of slope in a rupture life curve can occur from metallurgical instabilities, such as TG-IG fracture transition, recrystallization, aging or overaging (phase...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... the reaction is accelerated with increase in temperature. Fig. 1 A graphitized medium carbon steel; ( a ) graphite nodule in pearlite, with uniform distribution of cementite particles in pearlite around it; ( b ) same steel overaged—complete graphitization and phases present are ferrite and graphite...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... of the alloy. Because these features influence the material properties, corresponding changes in strength and oxidation/corrosion resistance occur. Typical nickel alloy metallurgical instabilities include gamma-prime overaging, carbide overaging, creep damage, oxidation/hot corrosion damage, and coating...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... alloys Larger matrix precipitates and grain boundary particles due to overaging Increase in intergranular microvoid coalescence during unstable fracture Lower K Ic and K c None for stress corrosion Higher K Iscc and lower region II crack growth velocity Larger grain size Overaged Al...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... to SCC. Overaged structures are considered to be less susceptible. The mechanism of crack growth is thought to be a combination of local anodic dissolution and hydrogen embrittlement. Whether crack extension is by anodic dissolution or by hydrogen embrittlement remains an open question; however...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... with respect to each other but also crystallographic differences. For example, 7000-series aluminum alloys are susceptible to SCC when solution treated and aged (T6 condition), yet the same alloy can be safely used when solution treated and overaged (T7 condition) ( Ref 8 , 9 ). (An aluminum alloy with a T6...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
.... For example, if a martensitic steel is tempered at a given temperature and then encounters a higher temperature in service, yield strength and tensile strength will decrease because of overtempering. Long-time exposure to moderately elevated temperatures may cause overaging in a precipitation-hardening alloy...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... and even fracture to occur. For example, if a martensitic steel is tempered at a given temperature and then encounters a higher temperature in service, yield strength and tensile strength will decrease because of overtempering. Long-time exposure to moderately elevated temperatures may cause overaging...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2