1-16 of 16 Search Results for

orthopedic fixation device

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
..., these orthopedic devices are surgically implanted and affixed to bones, usually with screws of the same alloy composition. Fixation implants usually remain in the human body until the broken bone has healed sufficiently to sustain normal loading without the additional support provided by the implant. After several...
Image
Published: 01 January 2002
Fig. 2 Typical examples for orthopedic internal fixation devices (schematic). (a) and (b) Round hole bone plates (can be used with compression devices). (c) Classical Sherman bone plate. (d) to (g) Dynamic compression plates of various sizes. (h) Compression bone plate with glide holes. (i More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001801
EISBN: 978-1-62708-241-9
... fixation device fracture surface damage titanium alloy notches roughness metallography fatigue crack growth rates ASTM F136 (alpha-beta titanium alloy) UNS R56401 Introduction The Harrington rod, developed in 1953 by Paul Harrington, a professor of orthopedic surgery at Baylor College...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... Abstract This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001664
EISBN: 978-1-62708-226-6
... such a device in position. This device is frequently used for fixation of fractures across the neck of the femur and also for fixation of subtrochanteric fractures. Fig. 1 A drawing showing a compression hip screw device of the type investigated here, used for fracture fixation in the vicinity...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... removed after healing has occurred. These implants may also be left in the body with the intention that they will no longer be subjected to elevated loads that occur prior to bone healing. Internal fixation devices are generally used to hold together or stabilize orthopedic structures to promote healing...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
... of failures in stainless steel orthopaedic implant devices fatigue failure due to improper fixation of a compression bone plate . J. Mater. Sci. Lett. 13 , 142 – 145 ( 1994 ) 10.1007/BF00416827 5. Breme J. , Titanium and titanium alloys, biomaterials of preference . Mèmoires et É tudes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001579
EISBN: 978-1-62708-226-6
... readmitted to the hospital because of “pain and functional impotence of the left femur.” Radiography of the femur showed that the stainless steel bone plate had fractured and that no bone callus had formed. The bone plate was a nine holes dynamic compression device, typical of the orthopaedic internal...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... Abstract Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
.... orthopedic implant devices fracture corrosion inclusions and stress gaps medical materials cracking fretting pitting fractography fracture toughness Ti6Al4V (titanium-aluminum-vanadium alloy) UNS R56406 316L stainless steel (austenitic wrought stainless steel) UNS S31603 Introduction...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048400
EISBN: 978-1-62708-226-6
... carbide precipitates. 180x. (d) Fracture surface under scanning electron microscope indicating intercrystalline corrosion with pits on grain surfaces For this internal fixation, orthopedic wire of an insufficient stainless steel type was used. Improper heat treatment of the steel lead...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001690
EISBN: 978-1-62708-226-6
... , p. 12 . 15. Daniel A.U. and Dunn H.K. : Proc. Symp. on Retrieval and Analysis of Orthopedic Implants , NBS Special Publication 472 , Maryland , 1976 , pp. 61 – 71 . 16. Anon : Medical Equipment and Devices Industry , International Trade Data System, 2001. http...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001265
EISBN: 978-1-62708-215-0
... Junctions Porous coatings have been developed for orthopedic use primarily to provide a space into which bone can grow and mineralize, locking the device into place. This is termed biological fixation. During loading, however, this porous network is subjected to variable and nonintuitive stresses...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001264
EISBN: 978-1-62708-215-0
... • Pohler O.E.M. , Failures of Metallic Orthopedic Implants , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 670 – 694 10.31399/asm.hb.v11.a0001819 Handbook of Case Histories in Failure Analysis, Volume 2 Copyright © 1993 ASM International® K.A...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... caused by fretting damage when aluminum cylinders in Fig. 5 are extruded Fretting can occur also in certain orthopedic devices, particularly fracture fixation devices such as bone plates. These devices are used to hold together the parts of fractured bone. They consist of plates of corrosion...