Skip Nav Destination
Close Modal
Search Results for
oil wells
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 222 Search Results for
oil wells
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
... Abstract Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been...
Abstract
Sucker-rod pumps are operating in very aggressive environments in oil well production. The combined effect of a corrosive environment and significant mechanical loads contribute to frequent cases of failure of the rod string during operation. Standards and recommendations have been developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents a weaker resistance to corrosion affecting the rod life. Non-metallic inclusions are a pitting preferential site leading to fatigue crack initiation. Heterogeneous microstructure as banded martensite and ferrite/pearlite decreases the ductility of the material affecting the fatigue propagation resistance.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001115
EISBN: 978-1-62708-214-3
... tubing surface. Fig. 8 Spectrum obtained by EDAX analysis of inside tubing surface. Abstract During a work over of an oil well, the 9% Ni steel production tubing parted three times as it was being pulled from the well. The tubing had performed satisfactorily for more than 30 years...
Abstract
During a work over of an oil well, the 9% Ni steel production tubing parted three times as it was being pulled from the well. The tubing had performed satisfactorily for more than 30 years in the well A representative failure, a circumferential fracture in a connection, was analyzed. Reported to be a hydril CS connection, the pin end parted near the last threads. The external surface exhibited mechanical damage marks from the fishing operation. No signs of external corrosion or damage were detected. Visual surface examination revealed shear lips at the outside pipe, indicating that the fracture initiated at the inside surface and grew across the wall. Longitudinal cross sections revealed heavy corrosion damage to the inside pipe surface. Metallographic examination indicated that the tubing failed as a result of severe weakening from internal corrosion. Gray-colored corrosion deposits, which penetrated the pipe throughout the grain boundaries of the material and concentrated in the matrix in a layer near the inside surface of the pipe, were observed. The presence of H2S in the produced fluids and the appearance of the gray deposit indicated that the tube suffered H2S corrosion. Chemical analysis of the base metal and corrosion deposits did not detect iron or nickel sulfides, however Replacement of the remaining pipe strings according to a scheduled program was recommended. Because 9% Ni steel was not available, 13% Cr martensitic stainless steel was recommended as a replacement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001628
EISBN: 978-1-62708-234-1
... conducted on a fresh oil sample as well as on a sample of used oil, which contained some of the refrigerant. The oil samples needed to be partially dried prior to introduction into the analysis chamber. Because of the high vacuum requirements, not all SEMs can be used for analyzing liquid specimens. The EDS...
Abstract
A nickel alloy cylinder plated with chromium along its inner liner, installed in a commercial ice cream freezer, showed gray discoloration along its OD surface. The discolored parts exhibited significantly reduced cooling efficiency as compared with new cylinders. During operation, the OD of the cylinder was exposed to liquid ammonia refrigerant containing lubricant from the compressor. The lubricant (mineral oil) was intended to separate from the ammonia and be recirculated through the compressor. Nondestructive portable optical microscopy, XRF, EDS, and XPS analyses showed that the discoloration on the cylinder was associated with metal oxidation products coated with a thin oil film. One of the recommendations was to plate the OD of the cylinder with hard chromium to increase its resistance to erosion. Another recommendation was to reduce the amounts of water contamination in the refrigerant.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
... Abstract Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron...
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
.... The pipe was obtained from a distributor to replace an old string in a well. The well was a hydraulically jet pumped well about 1800 m (6000 ft) deep that produced oil, water, and gas. The gas was sour and the H 2 S content of the gas in the pump separator at the surface was about 10,000 ppm. In this well...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0059932
EISBN: 978-1-62708-236-5
..., and the size of the shaft. A longitudinal beam was sent in from the end of the shaft. The shaft was observed to have a radially drilled oil hole 9 mm in diam. Since there was a variation in flaw orientation, testing of the shaft was desired from both the long and short end. The rejection level was set at 20...
Abstract
Field failures, traced to internal cracks that were initiated from gross nonmetallics, were encountered in the upset portion of forged 4118 steel shafts. Ultrasonic inspection was thought to be the best method for detection from the location of these cracks, their orientation, and the size of the shaft. A longitudinal beam was sent in from the end of the shaft. The shaft was observed to have a radially drilled oil hole 9 mm in diam. Since there was a variation in flaw orientation, testing of the shaft was desired from both the long and short end. The rejection level was set at 20% of full screen and was based on the size of flaws observed when the shafts were cut up. The inclusions were considered to be rejectable if the size was larger than 20 mm diam. Similar flaws were observed in larger shafts, but no flaws were observed once the shafts were sectioned. It was interpreted that the flaw signals were false and had happened when a portion of the beam struck the oily surface of the longitudinal oil hole. The problem was solved by removing the oil film from the longitudinal oil hole.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001436
EISBN: 978-1-62708-235-8
... direction and it is well known that the presence of a discontinuity, such as the oil groove, serves to increase the local value of a stress several times. It is evident that in this case the value of the stress attained a magnitude sufficient to cause brittle fracture of the steel, the material not being...
Abstract
A 3 in. diam shaft was found to have suffered excessive wear on one of the journals and was built up by welding. While it was in the lathe prior to turning down the built-up region, a crack was discovered in the root of the oil-seal groove and subsequently the end of the shaft was broken off with hammer blows. The fracture surface was duplex in nature, there being an annular region surrounding a central zone, which suggests that the fracture developed in two stages. Microscopic examination confirmed that the fracture was of the brittle type. The shaft material showed a microstructure typical of a medium-carbon steel (carbon approximately 0.4%) in the normalized condition, a material not weldable by ordinary methods. It was concluded that the post-welding crack arose primarily from the thermal contraction which developed in the weld metal on cooling. It is probable that if the built-up zone had extended beyond the oil seal groove, failure in the manner would not have occurred. Experience indicated however, that failure from fatigue cracking would still have been likely to occur.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
... Abstract A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral...
Abstract
A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001076
EISBN: 978-1-62708-214-3
...×. Fig. 5 Overlapping puddling and resultant craters. 46×. Fig. 6 An area of extreme electrical attack at the edge of an individual pad. “A” marks an oil groove that is partially filled with relocated silver/silver-sulfur compound. “B” is the site of buildup of silver-sulfur compound...
Abstract
The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper) was sound and free of voids and foreign material. Corrosion products contained a large quantity of sulfur. The probable cause of the attack was the presence of electrical current within the system, with sulfides a possible contributing factor. Elimination of residual magnetism and grounding of the rotating system at appropriate locations were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090427
EISBN: 978-1-62708-222-8
... imaging, and micro-FTIR in the ATR mode) showed that the spectrum representing the grip surface contained absorption bands associated with ABS as well as additional bands of significant intensity. A spectral subtraction removed the bands associated with the ABS resin resulting in a very good match...
Abstract
A set of plastic grips from an electric consumer product failed while in service. The grips had been injection molded from a general-purpose grade of ABS resin. The parts had cracked while in use after apparent embrittlement of the material. Investigation (visual inspection, SEM imaging, and micro-FTIR in the ATR mode) showed that the spectrum representing the grip surface contained absorption bands associated with ABS as well as additional bands of significant intensity. A spectral subtraction removed the bands associated with the ABS resin resulting in a very good match with glyceride derivatives of fats and oils. This supported the conclusion that the grips failed via brittle fracture associated with severe chemical attack of the ABS resin. A significant level of glyceride derivatives of fatty acids, known to degrade ABS resins, was found on the part surface.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046210
EISBN: 978-1-62708-235-8
... elliptical shape at the point of origin. The situation is shown schematically in Fig. 4 ; it was extremely well defined in terms of geometry and stress, and was thus amenable to analysis. Defects around the surface of the oil hole were observed whose size was of the order of 0.076 mm (0.003...
Abstract
Several crankshaft failures occurred in equipment that was being used in logging operations in subzero temperatures. Failure usually initiated at a cracked pin oil hole, and the failure origin was approximately 7.6 mm (0.3 in.) from the shaft surface. The holes were produced by gun drilling, giving rise to surface defects. The fracture surface was characteristic of fatigue in that it was flat, relatively shiny, and exhibited beach marks. The crack surface was at a 45 deg angle to the axis of the shaft, indicating dominant tensile stresses. The material was the French designation AFNOR 38CD4 (similar to AISI type 4140H) and was in the quenched-and-tempered condition, with a yield strength of about 760 MPa (110 ksi). It was treated to have compressive surface stresses, and the prior-austenite grain size was ASTM 8. Analysis (visual inspection, stress analyses, and macrographs) supported the conclusion that failure was caused by fatigue stress caused by surface defects in the oil holes. Recommendation includes drilling the oil holes by a technique that essentially eliminates surface defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
... examination of sections etched with Vilella's reagent supports the conclusions that failure of the bellows occurred by intergranular fatigue cracking. Secondary degrading effects on the piping existed as well. Recommendations included the acceptability of Type 321 stainless steel (provided open-cycle testing...
Abstract
A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking occurred in welded joints and in unwelded portions of the bellows. The bellows were made by forming the convolution halves from stainless steel sheet, then welding the convolutions together. Evidence from visual examination, liquid penetrant inspection chemical analysis, hardness tests, and metallographic examination of sections etched with Vilella's reagent supports the conclusions that failure of the bellows occurred by intergranular fatigue cracking. Secondary degrading effects on the piping existed as well. Recommendations included the acceptability of Type 321 stainless steel (provided open-cycle testing does not result in surface oxidation and crevices) Although type 347 stainless steel would be better, and Inconel 600 would be an even better choice. Welds would also need modified processing for reheating and annealing. Prevention of oil leakage into the system would minimize carburization of the piping and bellows.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001550
EISBN: 978-1-62708-228-0
... Abstract A 100,000 barrel crude oil storage tank rupture caused extensive property damage in Dec 1980, in Moose Jaw, Saskatchewan. Failure was attributed to a brittle fracture that originated at a weld between a reinforcing pad and a manway nozzle. Factors that contributed to the brittle...
Abstract
A 100,000 barrel crude oil storage tank rupture caused extensive property damage in Dec 1980, in Moose Jaw, Saskatchewan. Failure was attributed to a brittle fracture that originated at a weld between a reinforcing pad and a manway nozzle. Factors that contributed to the brittle fracture included incomplete penetration in a single-bevel groove weld, poor impact properties of the hot rolled ASTM A283 low-carbon steel base material, and air temperature down to 27 C on the day of failure. Details of the analysis and results of impact testing are discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0048077
EISBN: 978-1-62708-221-1
... examination. The shaft was identified by chemical analysis to be 1040 steel (hardness 170 HRB) which was concluded to have insufficient fatigue strength. The step at the base of the fillet was revealed as the point of initiation of the fatigue crack. Shaft material was changed to 4140 steel oil-quenched...
Abstract
The 14-cm diam main hoist shaft of a mobile shovel was found to have multiple crack indications when ultrasonically inspected in the field. A crack around the entire circumference at the change in section was revealed by magnetic-particle inspection of the shaft. The crack was found to coincide with the junction of the fillet and the smaller diam at this change in section. A slight step in the continuity of the fillet and some machining marks were noted at this junction. A fine crack extending 2.5 mm from the surface and originating at the machining marks was revealed by microscopic examination. The shaft was identified by chemical analysis to be 1040 steel (hardness 170 HRB) which was concluded to have insufficient fatigue strength. The step at the base of the fillet was revealed as the point of initiation of the fatigue crack. Shaft material was changed to 4140 steel oil-quenched and tempered to a hardness of 302 to 352 HRB and all machining discontinuities were removed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
...-in and inspection was minimal, resulting in the opening of hot engines to the surrounding atmosphere and thereby permitting the entrance and accumulation of moisture on internal parts (that is, on the bearing cap bolt well and chamber). During the run-in and bearing inspection, engine oil accumulated in the bolt...
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089657
EISBN: 978-1-62708-233-4
... of maximum stress under simple tension. Because nearly all service fatigue cracks did not occur at the threads but initiated from the oil orifices, cracking can likely be attributed to slight misalignment that caused bending as well as tension and to the force of the oil on the surface immediately above...
Abstract
The gun mount used in two types of self-propelled artillery consists of an oil-filled recoil cylinder and a sand-cast (MIL-I-11466, grade D7003) ductile-iron piston that connects to the gun tube through a threaded rod. The piston contains several orifices through which oil is forced as a means of absorbing recoil energy. During operation, the piston is stressed in tension, pulled by oil pressure on one end and the opposing force of the gun tube on the other. The casting specification stipulated that the graphite be substantially nodular and that metallographic test results be provided for each lot. Investigation (visual inspection, fatigue testing, 0.25x/0.35x/50x magnifications, 2% nital etched 60x/65x magnifications, and SEM views) showed that most of the service fractures occurred in pistons containing vermicular graphite. Recommendations included ultrasonic testing of pistons already in the field to identify and reject those containing vermicular graphite. In addition, metallographic control standards were suggested for future production lots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048835
EISBN: 978-1-62708-220-4
... Abstract Welds in two CMo steel catalytic gas-oil desulfurizer reactors cracked under hydrogen pressure-temperature conditions that would not have been predicted by the June 1977 revision of the Nelson Curve for that material. Evidence of severe cracking was found in five weld-joint areas...
Abstract
Welds in two CMo steel catalytic gas-oil desulfurizer reactors cracked under hydrogen pressure-temperature conditions that would not have been predicted by the June 1977 revision of the Nelson Curve for that material. Evidence of severe cracking was found in five weld-joint areas during examination of a naphtha desulfurizer by ultrasonic shear wave techniques. Defect indications were found in longitudinal and circumferential seam welds of the ASTM A204, grade A, steel sheet. The vessel was found to have a type 405 stainless steel liner for corrosion protection that was spot welded to the base metal and all vessel welds were found to be overlaid with type 309 stainless steel. Long longitudinal cracks in the weld metal, as well as transverse cracks were exposed after the weld overlay was ground off. A decarburized region on either side of the crack was revealed by metallurgical examination of a cross section of a longitudinal crack. It was concluded that the damage was caused by a form of hydrogen attack. Installation of a used Cr-Mo steel vessel with a type 347 stainless steel weld overlay was suggested as a corrective action.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001572
EISBN: 978-1-62708-236-5
... with discoloration and coating removal. The substrate material was E52100 which was through-hardened to HRC 55-60. The slippers that were in contact with the coated wobbler surface were made of AISI 06 material. A synthetic oil was used as the hydraulic fluid in the application. The failure in the wobblers...
Abstract
Extensive slipper/wobbler failures occurred in the integrated drive generators that incorporated TiN coated wobblers, during the production acceptance test. Similar coated wobblers had passed the application tests. The nature of the failure was extensive gouging of the wobbler surface with discoloration and coating removal. The substrate material was E52100 which was through-hardened to HRC 55-60. The slippers that were in contact with the coated wobbler surface were made of AISI 06 material. A synthetic oil was used as the hydraulic fluid in the application. The failure in the wobblers was caused by lack of temperature control during application which resulted in localized surface rehardening. It was established that there was a significant difference in the grade of the hydraulic fluid that was used in the two test programs. Use of superior grade of hydraulic fluid was recommended in this case for the production acceptance tests.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0009190
EISBN: 978-1-62708-225-9
... Abstract In an industrial application, 24 speed-increaser gearboxes were used to transmit 258 kW (346 hp) and increase speed from 55 to 375 rev/min. The gears were parallel shaft, single helical, carburized, and ground. The splash lubrication system used a mineral oil without antiscuff...
Abstract
In an industrial application, 24 speed-increaser gearboxes were used to transmit 258 kW (346 hp) and increase speed from 55 to 375 rev/min. The gears were parallel shaft, single helical, carburized, and ground. The splash lubrication system used a mineral oil without antiscuff additives with ISO 100 viscosity. After about 250 h of operation, two gearboxes failed by bending fatigue. Investigation showed the primary failure mode was scuffing, and the earlier bending fatigue failures were caused by dynamic loads generated by the worn gear teeth. Testing of a prototype gearbox showed that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were not provided with a coating or plating to ease running-in; and the gears were not run-in properly under reduced loads. The case suggests that such gear failures can be avoided if designers and operators recognize that the lubricant is an important component of a gearbox and appreciate that gear design requires the consideration and control of many interrelated factors.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001415
EISBN: 978-1-62708-236-5
... Abstract In the course of a general overhaul, the crankpins and main journals (3 in. diam) of the crankshaft of a four-cylinder oil engine were built up by metal spraying. Four weeks later, the shaft broke through the pin remote from the flywheel (driving) end. The fracture was of the fatigue...
Abstract
In the course of a general overhaul, the crankpins and main journals (3 in. diam) of the crankshaft of a four-cylinder oil engine were built up by metal spraying. Four weeks later, the shaft broke through the pin remote from the flywheel (driving) end. The fracture was of the fatigue type. A creeping crack originated in the fillet at the inside surface of the pin and extended parallel to the plane of the web across practically the entire section before complete rupture occurred. The sprayed metal on the fractured pin had very poor adhesion. The surfaces of the main journals had not been grooved but appeared to have been roughened by shot or grit-blasting prior to spraying and the deposit was more firmly adherent to these surfaces than in the case of the pins. It is doubtful, however, whether the adhesion of sprayed metal to a surface prepared even in this manner would always be satisfactory under severe loading conditions, such as those to which a crankpin is subjected in service.
1