Skip Nav Destination
Close Modal
Search Results for
oil and gas
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 303 Search Results for
oil and gas
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.9781627082280
EISBN: 978-1-62708-228-0
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... Schematic diagram of Heater Treater Abstract A sleeve-shaped fire shield that operates inside one of two burner trains in an oil and gas processing unit ruptured after 15 y of service. A detailed analysis was conducted to determine how and why the sleeve failed. The investigation included visual...
Abstract
A sleeve-shaped fire shield that operates inside one of two burner trains in an oil and gas processing unit ruptured after 15 y of service. A detailed analysis was conducted to determine how and why the sleeve failed. The investigation included visual inspection, chemical and gas analysis, mechanical property testing, stereomicroscopy, and metallographic examination. The fire sleeves are fabricated from 3-mm thick plate made of Incoloy 800 rolled into 540-mm diam sections welded along the seam. Three such sections are joined together by circumferential welds to form a single 2.8 m sleeve. The findings from the investigation indicated that internal oxidation corrosion, driven by high temperatures, was the primary cause of failure. Prolonged exposure to temperatures up to 760 °C resulted in sensitization of the material, making it vulnerable to grain boundary attack. This led to significant deterioration of the grain boundaries, causing extensive grain loss (grain dropping) and the subsequent thinning of sleeve walls. Prior to failure, some portions of the sleeve were only 1.6 mm thick, nearly half their original thickness.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... cracking of linepipe steel . Corros. Sci. 50 , 1865 – 1871 ( 2008 ) 10.1016/j.corsci.2008.03.007 11. Standard MR175 NACE , Materials for use in H2S Containing Environments in Oil and Gas Production . ( NACE , Houston, TX , 2001 ) 12. Kim W.K. , Yang B.Y. , Effect...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048719
EISBN: 978-1-62708-228-0
Abstract
A tubular heat exchanger in a refinery reformer unit leaked after one month of service. The exchanger contained 167 type 304 stainless steel U-bent integral-finned tubes. Cracks in the tube wall were revealed during examination. Hardness of the tube was found to be 30 HRC at the inside surface and up to 40 HRC at the base of the fin midway between the roots which indicated that the fins were cold formed and not subsequently annealed thus susceptible to SCC because of a high residual stress level. It was revealed by metallographic examination that the fracture was predominantly by transgranular branched cracking and had originated from the inside surface. It was concluded that the tubes failed in SCC caused by chlorides in the presence of high residual stresses. The finned tubes were ordered in the annealed condition as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
... Abstract U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room...
Abstract
U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room temperature, and electroplated with cadmium for protection against corrosion. Each fracture showed seven or eight kidney-shaped cracks. At the origins of these cracks on the concave inner surface of the springs, crater-like depressions and beads of melted and resolidified material were found. Fracture of the springs was caused by stress cracks as a consequence of local hardening. The hardening caused by melting and resolidification, and therefore the cracks in the springs, was the result of a faulty procedure during cadmium electroplating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0091594
EISBN: 978-1-62708-228-0
Abstract
Two leaks were discovered at a sulfur recovery unit in a refinery. The leaks were at pipe-to-elbow welds in a 152 mm (6 in.) (NPS 6) diam line, operating in lean amine service at 50 deg C (120 deg F) and 2.9 MPa (425 psig). Thickness measurements indicated negligible loss of metal, and the leaks were clamped. A year later, 15 additional leaks were discovered, again at pipe-to-elbow welds in lean amine lines. Further nondestructive testing located other cracks, giving a total of 35. These lines had been in service for approximately eight years. Investigation (visual inspection, hardness testing, and micrographic cross-sections) supported the conclusion that the failure was caused by lean amine SCC. It was considered unlikely that these pipe welds had received such a postweld heat treatment, although it is industry practice to postweld stress relieve piping and pressure vessels in lean amine service if the temperature is expected to be above 95 deg C (200 deg F). Recommendations included inspecting all welds using shear wave ultrasonic testing and postweld heat treating all welds in lean amine service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001693
EISBN: 978-1-62708-228-0
... Abstract A four-million gallon capacity (15,142 cu m) oil storage tank ruptured upon filling after re-erection near West Elizabeth, PA on 2 Jan 1988. The tank shell split vertically with failure originating at a flaw existing prior to the reconstruction. Brittle fracture occurred both up...
Abstract
A four-million gallon capacity (15,142 cu m) oil storage tank ruptured upon filling after re-erection near West Elizabeth, PA on 2 Jan 1988. The tank shell split vertically with failure originating at a flaw existing prior to the reconstruction. Brittle fracture occurred both up and down from the defect when the stress induced by filling reached a critical value for the steel, which had poor toughness properties. This steel had been used in the original construction of a tank in Ohio more than 40 years previously. The defect at which brittle fracture originated in the tank shell showed evidence of burning from a torch. This tank failure was the catalyst for the introduction of new rules concerning the inspection and assessment of older storage tanks.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047537
EISBN: 978-1-62708-228-0
Abstract
During the construction of a large-diam pipeline, several girth welds had to be cut out as a result of radiographic interpretation. The pipeline was constructed of 910 mm (36 in.) diam x 13 mm (0.5 in.) wall thickness grade X448 (x65) line pipe. The girth welds were fabricated using standard vertical down stove pipe-welding procedures with E7010 cellulosic electrodes. The crack started partially as a result of incomplete fusion on the pipe side wall, which in turn was a result of misalignment of the two pipes. The crack was typical of hydrogen cracking. Girth welds can be made using cellulosic electrodes. For high-risk girth welds, an increase in preheat and/or a reduction in the local stress by controlling lift height or depositing the hot pass locally before lifting may be required.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001166
EISBN: 978-1-62708-228-0
... Abstract After four months at a temperature of 400 to 5000 C, pipes at a gas generating plant were so heavily eroded they had to be replaced. Three sections of pipe, from different locations, were analyzed to determine whether mechanical wear or corrosion caused the damage. Samples of corrosion...
Abstract
After four months at a temperature of 400 to 5000 C, pipes at a gas generating plant were so heavily eroded they had to be replaced. Three sections of pipe, from different locations, were analyzed to determine whether mechanical wear or corrosion caused the damage. Samples of corrosion product from each pipe section were analyzed for carbon, sulfur, and iron and were found to consist mainly of iron sulfide mixed with soot and rust. The damage resulted from a high content of hydrogen sulfide in the gas (6% CO2, 20% CO, 8 to 12% H2, 0.5 to 1.5% CH4, remainder N2). To process the coal in question, the pipes material should be a heat-resistant steel that contains more chromium and has greater resistance to hydrogen sulfide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
... Abstract Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary...
Abstract
Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary failure point. Numerous OD surface fissures were revealed by a low-power microscope. A brittle zone near the OD, identified as a sulfide stress crack with additional fatigue cracking was revealed by SEM. Sulfide stress cracking defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051866
EISBN: 978-1-62708-228-0
... (2.000 in. OD × 0.156 in. W ) with a yield strength of 483 MPa (70 ksi) was used to drill 68 steam injection wells in California for a major oil company. Depth of the wells ranged from 850 to 1000 ft (259 to 305 m). The tubing had used about 50% of its estimated fatigue life when failure occurred...
Abstract
Coiled tubing used in drilling operations failed at the halfway point of its estimated fatigue life. The failure was found to be transverse to the tubing axis. Visual examination revealed a flat fracture surface extending 13 mm with the rest of the fracture showing shear lips indicative of tensile overload. The flat portion of the fracture surface was typical of fatigue cracking. Fatigue striations were revealed by SEM. Corrosion pitting on the tubing ID from which the fatigue crack had propagated were observed on closer examination. The corrosion pitting was speculated to have occurred when the tubing was idle and fluids accumulated at the bottom of the tubing wraps. The coiled tubing was concluded to have failed prematurely due to low-cycle fatigue initiated at corrosion pitting sites. Corrosive attack on the coiled tubing was recommended to be reduced by completely removing fluids or modifying the fluids in the tubing or purging by flowing dry nitrogen to dry it out.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
.... The pipe was obtained from a distributor to replace an old string in a well. The well was a hydraulically jet pumped well about 1800 m (6000 ft) deep that produced oil, water, and gas. The gas was sour and the H 2 S content of the gas in the pump separator at the surface was about 10,000 ppm. In this well...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
Abstract
The welds joining the liner and shell of a fluid catalytic cracking unit failed. The shell was made of ASTM A515 carbon steel welded with E7018 filler metal. The liner was made of type 405 stainless steel and was plug welded to the shell using ER309 and ER310 stainless steel filler metal. Fine cracks starting inside the weld zone and spreading outward through the weld and toward the surface were observed during examination. Decarburization and graphitization of the carbon steel at the interface was noted. The high carbon level was found to allow martensite to form eventually. The structure was found to be austenitic in the area where the grain-boundary precipitates appeared heaviest. The composition of the precipitates was analyzed using an electron microprobe to reveal presence of sulfur. Microstructural changes in the weld alloy at the interface were interpreted to be caused by dilution of the alloy and the presence of sulfur caused hot shortness. The necessary internal stress to produce extensive cracking was produced by the differential thermal expansion of the carbon and stainless steels. Periodic careful gouging of the affected areas followed by repair welding was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001586
EISBN: 978-1-62708-228-0
... black tar-like coating was cracked. Gas pipelines Welded joints Pipeline steel Ductile fracture Fatigue fracture Pitting corrosion The National Transportation Safety Board simultaneously investigates major accidents in different modes of transportation at any time. The services...
Abstract
On 9 March 2000, a gasoline pipeline failed near Greenville, TX releasing approximately 12,000 barrels of fuel. After the on-scene portion of the investigation was completed, an 8.5 ft. (2.6 m) section of the 28 in. (71 cm) diam pipe was sent to the materials laboratory for examination. Examination included optical and scanning electron microscopy of the fracture surfaces and metallographic examination of cross sections through the fracture surface. From the outer to inner edge of the fracture surface, three different areas were observed. Fracture features in area 1 were obliterated by corrosion. The fracture features in region 2 were relatively smooth, and striations were observed, typical of fatigue. In region 3, dimple features were observed, typical of ductile overstress. Also, corrosion pits were observed on the outer surface of the pipe section in locations where the protective black tar-like coating was cracked.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001603
EISBN: 978-1-62708-228-0
... Pipelines are the most economical mode of transportation of oil and natural gas from the production site to the consumer. Several large pipeline projects have been initiated in India to meet the increasing demand for oil and gas transportation. The demand for higher transportation capacity...
Abstract
The genesis of failure of 6.1 mm thick electric resistance welded API 5L X-46 pipes during pretesting at a pressure equivalent to 90% of specified minimum yield strength was investigated. Cracks were found to initiate on the outer surface of the pipes in the fusion zone and propagate along the through-thickness direction. The presence of extensive decarburization and formation of a soft ferrite band within the fusion zone may have contributed to the nucleation of the cracks. Crack propagation was aided by the presence of exogenous inclusions entrapped within the fusion zone. Analysis of these inclusions confirmed the presence of Fe, Si, Ca, and O, indicating slag entrapment to be the most probable culprit.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048698
EISBN: 978-1-62708-228-0
... Abstract Wet natural gas was dried by being passed through a carbon steel vessel that contained a molecular-sieve drying agent. The drying agent became saturated after several hours in service and was regenerated by a gas that was heated to 290 to 345 deg C in a salt-bath heat exchanger...
Abstract
Wet natural gas was dried by being passed through a carbon steel vessel that contained a molecular-sieve drying agent. The drying agent became saturated after several hours in service and was regenerated by a gas that was heated to 290 to 345 deg C in a salt-bath heat exchanger. The tee joint in the piping between the heat exchanger and the sieve bed failed after 12 months. A hole in the tee fitting and a corrosion product on the inner surface of the pitting was revealed by visual examination. Iron sulfide was revealed by chemical analysis of the scale which indicated hydrogen sulfide attack on the carbon steel. The presence of oxygen was indicated by the carbon and sulfur found in the scale on the piping and in the sieves indicated that oxygen combined with moisture produced conditions for attack of hydrogen sulfide on carbon steel. Turbulence with some effect from the coarse grain size was interpreted to have contributed. The piping material was changed from carbon steel to AISI type 316 stainless steel as it is readily weldable and resistant to corrosion by hydrogen sulfide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0065825
EISBN: 978-1-62708-228-0
... Abstract A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were...
Abstract
A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were concentrated towards decreasing the Charpy ductile-to-brittle transition temperature to avoid brittle fracture. It was subsequently revealed that the absorbed energy on the upper shelf of the Charpy energy-temperature curve was critical for arresting a moving crack. Both fracture initiation and fracture propagation were needed be controlled. It was concluded that improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001512
EISBN: 978-1-62708-228-0
..., misunderstanding of brittle fracture led to the wrong design and construction of an LPG storage tank. The best design specification is to use a correlation between LAST, the Lowest Anticipated Service Temperature, and the DBTT measured by either Charpy tests or DTT. Crude oil Design Fillet welds Standards...
Abstract
When a large LPG low-carbon steel storage tank was put into service for the first time and filled beyond the proof testing level, a brittle fracture crack initiated at a fillet weld between a stiffener ring and the wall. The crack propagated to a length of 5.5 m and arrested. Analysis showed that the plates satisfied the criteria of BS 4741. It was concluded that the cause of crack initiation was the lack of a mouse hole at the junction between the stiffening ring and the wall of the tank. The tank was repaired and put back in service. When it was filled beyond the proof test level, again a brittle crack was initiated at a horizontal weld defect and propagated vertically, destroying the tank and the liquefaction plant. The initiation site was a thumbnail elliptical crack in a horizontal weld, having a depth of 1.5 mm, and a length of 4.5 mm. This showed that as late the mid-1970s, misunderstanding of brittle fracture led to the wrong design and construction of an LPG storage tank. The best design specification is to use a correlation between LAST, the Lowest Anticipated Service Temperature, and the DBTT measured by either Charpy tests or DTT.
1