Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
nonmetallic materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 140 Search Results for
nonmetallic materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091201
EISBN: 978-1-62708-219-8
... conditions present in the piping were primary contributors to the pit progression. Recommendations included replacing the pipe. Several alloys, nonmetallic materials, and lining materials were proposed for coupon testing to determine which would operate best in an environment with high levels of aerobic...
Abstract
Type 316L (UNS S31603) austenitic stainless steel piping was installed as part of a storm-sewer treatment collection system in a manufacturing facility. Within six months of start-up, leaks were discovered. Investigation (on-site current flow testing, visual inspection, water tests, and 5x/10x images etched in ASTM 89 reagent) supported the conclusion that the pitting in the austenitic stainless steel pipe was believed to be caused by damage to the passive layer brought about by a combination of MIC, high chloride levels, and high total dissolved solids. The low-flow and stagnant conditions present in the piping were primary contributors to the pit progression. Recommendations included replacing the pipe. Several alloys, nonmetallic materials, and lining materials were proposed for coupon testing to determine which would operate best in an environment with high levels of aerobic bacteria.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001273
EISBN: 978-1-62708-215-0
... alloy such as Inconel 625 or Incoloy 825. High-nickel alloys such as these have a good resistance to general corrosion and stress-corrosion cracking. Switching to a nonmetallic material might also solve the problem. While the above-mentioned materials would resist stress-corrosion cracking much better...
Abstract
One-quarter inch diameter 304 stainless steel cooling tower hanger rods failed by chloride-induced stress-corrosion cracking (SCC). The rods were located in an area of the cooling tower where the air contains drop lets of water below the mist eliminators and above the flow of water The most extensive cracking was observed in the rod nuts and in the portions of the rod which were covered by the nuts. Cracking was transgranular with extensive branching, and some corrosion occurred along the crack paths. The clamping force from the nuts used on both sides of the supported member and residual stresses from thread rolling likely contributed to the stresses for the cracking mechanism, along with the stresses induced by the supported load. The external surfaces of the hanger rods were reportedly exposed to a chloride-containing atmosphere, likely due to the biocide. Type 304 stainless steel is not a suitable material for this application, and materials that resist SCC, such as Inconel, should be considered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... Spectroscopy Characterization Chemical fingerprinting of polymers and other nonmetallic materials can be performed on small specimens using FTIR or Raman spectroscopy. Both techniques are considered nondestructive and can be performed for identification of the bulk material, coatings, greases...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001615
EISBN: 978-1-62708-235-8
... inclusions in the central portion of the raw bar stock rather than the usual problem of improper forging temperature. Strict control over the inclusion content in the raw material by changing the vendor eliminated the problem. Forming defect Hot forging Nonmetallic inclusions Upset forging EN8 DCR...
Abstract
Carbon steel axle forgings were rejected due to internal cracks observed during final machining. To determine the cause of the cracks, the preforms of the forging were analyzed in detail at each stage of the forging. The analysis revealed a large central burst in the intermediate stage of the forging preform, which subsequently increased in the final stage. A high upset strain during forging, especially in the final stage, accentuated the center burst by high lateral flow of the metal. It was concluded that the center burst of the axle forging resulted from a high concentration of nonmetallic inclusions in the central portion of the raw bar stock rather than the usual problem of improper forging temperature. Strict control over the inclusion content in the raw material by changing the vendor eliminated the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001648
EISBN: 978-1-62708-234-1
... away from the coupling surface; material near the surface that had been affected by corrosion; and a dark, nonmetallic deposit over the corrosion region. Fig. 21 Micrograph S1 ( Fig. 16 ); microstructure at location of corrosive attack at top of coupling. Unetched. (a) 22 ×. (b) 220...
Abstract
During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early in the examination that the fracture involved hydrogen stress cracking. However, the nature of the corrosive attack suggested an interaction between the threaded coupling and biological organisms living in the freshwater environment of the pump shaft. The organisms had colonized on the coupling, changing the local environment and creating conditions favorable to hydrogen stress cracking. This paper describes the analysis of the fracture of the coupling and provides an example of how biologically induced corrosion can result in unexpected fracture of a relatively basic machine part.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0045992
EISBN: 978-1-62708-225-9
... instead of the specified 55 to 60 HRC. Thus, the poppet failed by brittle fracture, and cracking occurred across nonmetallic inclusions. Recommendation was to redesign the valve with the poppet material changed to 4140 steel, hardened, and tempered to 50 to 55 HRC. Hardness Nonmetallic inclusions...
Abstract
After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet was specified to be case hardened to 55 to 60 HRC, with a case depth of 0.6 to 0.9 mm (0.025 to 0.035 in.); the hardness of the mating valve seat was 40 HRC. Analysis showed that the fracture occurred through two 8 mm (0.313 in.) diam holes at the narrowest section of the poppet. The valve continued to operate after it broke, which resulted in extensive loss of metal between the holes. 80x micrograph and 4x macrograph of a 5% nital etched longitudinal section, and chemical analyses showed the poppet did fit 1213 or 1215 specs. However, hardness measurements showed surface hardness was excessive-61 to 65 HRC instead of the specified 55 to 60 HRC. Thus, the poppet failed by brittle fracture, and cracking occurred across nonmetallic inclusions. Recommendation was to redesign the valve with the poppet material changed to 4140 steel, hardened, and tempered to 50 to 55 HRC.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047856
EISBN: 978-1-62708-217-4
.... Recommendations The forging vendors were notified that nonmetallic inclusions of a size in excess of that expected in aircraft-quality steel were found in the master connecting rods. Forging techniques that provided increased working of the material between the knuckle-pin flanges to break up the large...
Abstract
The master connecting rod of a reciprocating aircraft engine revealed cracks during routine inspection. The rods were forged from 4337 (AMS 6412) steel and heat treated to a specified hardness of 36 to 40 HRC. H-shaped cracks in the wall between the knuckle-pin flanges were revealed by visual examination. The cracks were originated as circumferential cracks and then propagated transversely into the bearing-bore wall. No inclusions in the master rod were detected by magnetic-particle and x-ray inspection. Three large inclusions lying approximately parallel to the grain direction and fatigue beach marks around two of the inclusions were revealed by macroscopic examination of the fracture surface. Large nonmetallic inclusions that consisted of heavy concentrations of aluminum oxide (Al2O3) were revealed by microscopic examination of a section through the fracture origin. The forging vendors were notified about the excess size of the nonmetallic inclusions in the master connecting rods and a nondestructive-testing procedure for detection of large nonmetallic inclusions was established.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089338
EISBN: 978-1-62708-224-2
... stringers and ferrite bands in the base metal matrix. The material used for this application was very anisotropic, exhibiting substantially poorer long and short transverse mechanical properties than longitudinal properties. Lifting eye Manganese sulfide Nonmetallic inclusions 1144 UNS G11440...
Abstract
A steel lifting eye, manufactured from grade 1144 steel, failed during service. The eye ring fractured in two places, adjacent to the threaded shank and diametrically opposite to this region. Woody overload features, typical for resulfurized steels were revealed by SEM. The directionality of the features was found to be suggestive of shear overload. It was observed that fracture preferentially followed the nonmetallic inclusions. The fracture was revealed to be parallel to the direction of the manganese sulfide stringer inclusions. The presence of significant banding of the ferrite and pearlite microstructure was revealed by etching. It was also observed that the fracture is primarily along the inclusions and through bands of ferrite. It was concluded that the lifting eye failed as a result of overload. Fracture occurred parallel to the rolling direction, through manganese-sulfide stringers and ferrite bands in the base metal matrix. The material used for this application was very anisotropic, exhibiting substantially poorer long and short transverse mechanical properties than longitudinal properties.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... led to the failure of the 316 austenitic stainless steel pump axis analyzed in this work. It is well known in the literature [ 16 – 18 ] that nonmetallic inclusions appear in the early stages of steelmaking process, mainly as a consequence of the presence of impurity in the raw material, which...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001299
EISBN: 978-1-62708-215-0
... of a section across the fracture in the region adjacent to the subsurface defect revealed that the material was very unclean, with numerous globular nonmetallic oxide inclusions ( Fig. 5 ). Otherwise, the microstructure consisted of fine-grained tempered martensite Visual examination revealed...
Abstract
A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses. SEM examination revealed that the fracture origin was a subsurface defect-a hard refractory (Al2O3) inclusion—in the zone close to the pin radius. Chemical analysis showed the crankshaft material to be of inferior quality. It was recommended that magnetic particle inspection using the dc method be used to cheek for cracks during periodic maintenance overhauls.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047144
EISBN: 978-1-62708-235-8
.... The results of the autofrettage process, which creates a state of plastic strain in the material, is an increase in the fatigue life of the component. Analysis (visual inspection, 50x/500x unetched micrographs, and electron microprobe analysis) supports the conclusion that the fracture toughness of the steel...
Abstract
During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate. The results of the autofrettage process, which creates a state of plastic strain in the material, is an increase in the fatigue life of the component. Analysis (visual inspection, 50x/500x unetched micrographs, and electron microprobe analysis) supports the conclusion that the fracture toughness of the steel was exceeded, and failure through the wall occurred because of the following reason: the high level of iron oxide found is highly abnormal in vacuum-degassed steels. Included matter of this nature (exogenous) most likely resulted from scale worked into the surface during forging. Therefore, it is understandable that failure occurred during autofrettage when the section containing these defects was subjected to plastic strains. Because the inclusions were sizable, hard, and extremely irregular, this region would effect substantial stress concentration. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046195
EISBN: 978-1-62708-225-9
... in the spline ( Fig. 1 ), but it was impossible to determine which crack started first. Microstructural examination revealed an unsatisfactory carbonitrided case structure resulting from improper heat treatment, as well as many fine nonmetallic stringer inclusions in the core material. Conclusions...
Abstract
A pilot-valve bushing fractured after only a few hours of service. In operation, the bushing was subjected to torsional stresses with possible slight bending stresses. A slight misalignment occurred in the assembly before fracture. The bushing was made of 8617 steel and was case hardened to a depth of 0.13 to 0.4 mm (0.005 to 0.015 in.) by carbonitriding. Specifications required that the part be carbonitrided, cooled, rehardened by quenching from 790 deg C (1450 deg F), then tempered at about 175 deg C (350 deg F). Visual examination, hardness testing, and metallographic and microstructural investigation supported the conclusion that the bushing fractured in fatigue because of a highly stressed case-hardened surface of unsatisfactory microstructure and subsurface nonmetallic inclusions. Cracks initiated at the highly stressed surface and propagated across the section as a result of cyclic loading. The precise cause of the unsatisfactory microstructure of the carbonitrided case could not be determined, but it was apparent that heat-treating specifications had not been closely followed. Recommendations included that inspection procedures be modified to avoid the use of steel containing nonmetallic stringer inclusions and that specifications for carbonitriding, hardening, and tempering be rigorously observed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001607
EISBN: 978-1-62708-231-0
... Abstract Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions...
Abstract
Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions near the surface of individual wire strands in the rope. The inclusions were identified as Al-Ca-Ti silicates in a large number of stringers, and some oxide and nitride inclusions were also found. The wire used in the rope did not conform to the composition specified for AISI 316 grade steel, nor did it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001381
EISBN: 978-1-62708-215-0
...Results of chemical analysis Table 1 Results of chemical analysis Element Composition, % Bolt material AISI E4340 chemical requirement (a) Carbon 0.41 0.38–0.43 Manganese 0.64 0.65–0.85 Phosphorus 0.006 0.025 (max) Sulfur 0.002 0.025 (max) Silicon...
Abstract
A helicopter main rotor bolt failed in the black-coated region between the threads and the taper section of the shank during assembly. The torque applied was approximately 100 N·m (900 in.·lbf) when the bolt sheared. No other bolts were reported to have failed. The failed bolt material conformed to AISI E4340 steel, as specified. The microstructure was tempered martensite, with hardness ranging from 41 to 45 HRC. Failure was in the shear ductile mode. The crack initiated in the area of slag inclusions. Inspection of other bolts from the same shipment was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089429
EISBN: 978-1-62708-223-5
... shattered suddenly with a bang which caused a chip to be dislodged and cause the injury. A large nonmetallic inclusion parallel to the axis near the center of the drill was revealed in an unetched longitudinal section. Carbide bands in a martensitic matrix were indicated in an etched sample...
Abstract
The failure of a high speed steel twist drill which caused injury to the user was investigated thoroughly to settle a legal suit. The drill was being used to remove a stud that broke in the vertical wall of a metalworking machine (upsetter) after drilling a pilot hole. The drill had shattered suddenly with a bang which caused a chip to be dislodged and cause the injury. A large nonmetallic inclusion parallel to the axis near the center of the drill was revealed in an unetched longitudinal section. Carbide bands in a martensitic matrix were indicated in an etched sample. It was concluded by the plaintiff's metallurgist that the failed drill was defective as the steel contained nonmetallic inclusions and carbide segregation which made it brittle. It was revealed by the defendant that the twist drill met all specifications of M1 high-speed steel and investigated several other drills without failure to prove that the failure was caused by use in excessive conditions. It was revealed by examination that the point of the broken drill was not the original point put on at manufacture but came from regrinding. Both technical and legal details have been discussed.
Image
in Failure of Seamless Tubing Due to a Quench Crack
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
of failure associated with the fracture. 50x. (d) Micrograph showing the typical concentrations of nonmetallic stringers in the tube material. (e) Micrograph showing a quench crack. Note the intergranular branching and heavy oxide. 400x
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047779
EISBN: 978-1-62708-223-5
... and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low...
Abstract
Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... operations and sheet-forming operations. The general distinction here is that bulk working imposes material flow in all directions, while sheet-forming operations are typically limited to two-dimensional deformation. Metalworking operations are also classified as either primary metalworking (where mill forms...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... maintenance. corrosion corrosion failure analysis corrosion monitoring electrochemical corrosion galvanic protection inhibitors metallic coatings nonmetallic coatings preventive maintenance surface treatments thermal spray CORROSION is the deterioration of a material by a reaction...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
1