Skip Nav Destination
Close Modal
Search Results for
nonmetallic coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 66 Search Results for
nonmetallic coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001381
EISBN: 978-1-62708-215-0
... surface was also inspected for identification of coatings and surface treatments. Figure 3 shows the two mating halves of-the-fracture. Figure 5 shows closeup views of the fracture initiation region. The white inclusions were nonmetallic particles that were high in calcium. Figure 6 illustrates...
Abstract
A helicopter main rotor bolt failed in the black-coated region between the threads and the taper section of the shank during assembly. The torque applied was approximately 100 N·m (900 in.·lbf) when the bolt sheared. No other bolts were reported to have failed. The failed bolt material conformed to AISI E4340 steel, as specified. The microstructure was tempered martensite, with hardness ranging from 41 to 45 HRC. Failure was in the shear ductile mode. The crack initiated in the area of slag inclusions. Inspection of other bolts from the same shipment was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001435
EISBN: 978-1-62708-236-5
... the fatigue failure occurred. The quality of the welding was poor. Slag inclusions were present adjacent to the sides of the keyway, which had been re-cut shorter than the original one after the welding repair. Failure at the unusual location was caused by the presence of the weld deposit. Nonmetallic...
Abstract
Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year prior to failure the inner race of the roller bearing became slack on the shaft and the seating was built up by the metal-spray process. The shaft was machined to form a rough thread to provide the requisite mechanical key for the sprayed-on metal. Part of this sprayed-on layer became detached after the fatigue failure occurred. The quality of the welding was poor. Slag inclusions were present adjacent to the sides of the keyway, which had been re-cut shorter than the original one after the welding repair. Failure at the unusual location was caused by the presence of the weld deposit.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... been dissolved. Iron is nearly inert in air-free water and seawater, because there is limited cathodic reaction possible. If the surface of the metal is coated with paint or other nonconducting film, the rates of both anodic and cathodic reactions are greatly reduced, and corrosion will be retarded...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048607
EISBN: 978-1-62708-225-9
... the effects of the antiseizure compound in acidified 3.5% NaCl solution on bolts at two hardness levels. Two bolts, one with a hardness of 41 to 42 HRC and the other of 20 to 22 HRC, were coated with the antiseizure compound. Another bolt that had a hardness of 41 to 42 HRC and a bolt having a hardness...
Abstract
Stainless steel bolts broke after short-term exposure in boiler feed-pump applications. Specifications required that the bolts be made of a 12% Cr high-strength steel with a composition conforming to that of AISI type 410 stainless steel. Several bolts from three different installations were examined. It was found that fracture of the bolts was by intergranular stress corrosion. A metallic copper-containing antiseizure compound on the bolts in a corrosive medium set up an electro-chemical cell that produced trenchlike fissures or pits for fracture initiation. Because the bolts were not subjected to cyclic loading, fatigue or corrosion fatigue was not possible. To prevent reoccurrence, bolts were required to conform to the specified chemical composition. The hardness range for the bolts was changed from 35 to 45 HRC to 18 to 24 HRC. Petroleum jelly was used as an antiseizure lubricant in place of the copper-containing compound. As a result of these changes, bolt life was increased to more than three years.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... Spectroscopy Characterization Chemical fingerprinting of polymers and other nonmetallic materials can be performed on small specimens using FTIR or Raman spectroscopy. Both techniques are considered nondestructive and can be performed for identification of the bulk material, coatings, greases...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001251
EISBN: 978-1-62708-235-8
..., the aluminum addition was reduced by one-half. Since then, there have been no additional rejects due to insufficient tensile and bend values. Castings Cracking (fracturing) Flanges Nonmetallic inclusions Tension tests Fe-0.22C GS C 25 (Other, general, or unspecified) fracture In a steel...
Abstract
In a steel foundry, tensile and bend specimens of castings made in a 2-ton basic arc furnace showed, at irregular intervals, regions with coarse-grained fractures where the specimens broke prematurely, so that the specified strength and toughness values could not be reached. Several cast tensile specimens and some forcibly-broken pieces of the flanges of armature yokes made of cast steel GS C 25 according to DIN 17 245 were investigated. Microscopic examination showed that the cause of damage was the superabundant use of aluminum as deoxidizer. According to recommendations, the aluminum addition was reduced by one-half. Since then, there have been no additional rejects due to insufficient tensile and bend values.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
.... A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings...
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001825
EISBN: 978-1-62708-241-9
... faces of the crack surface still intact. The fracture surfaces of cracks B and C were coated with black and green nonmetallic deposits. On the surface of crack B, there were rachet marks along the toe of the weld ( Fig. 3 ). One portion of the exposed crack surface had a thumbnail-shaped region...
Abstract
A type 304 stainless steel tube that failed in a boiler stack economizer was analyzed to determine the cause. The investigation consisted of visual, SEM/EDS, and metallographic analysis. Several degradation mechanisms appeared to be at work, including pitting corrosion, chloride stress corrosion cracking, and fatigue fracture. Investigators concluded that the primary failure mechanism was fatigue fracture, although either of the other mechanisms may have eventually caused the tube to fail in the absence of fatigue.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... segregation Ingot pipe, porosity, and centerline shrinkage High hydrogen content Nonmetallic inclusions Unmelted electrodes and shelf Cracks, laminations, seams, pits, blisters, and scabs Chemical Segregation The elements in a cast alloy are seldom distributed uniformly. Even unalloyed...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings. abrasive wear adhesive wear axial fatigue bending fatigue brittle fracture...
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
.... The microstructure was composed of heavily deformed and elongated ferrite–pearlite, and no other phase formation or nonmetallic inclusions could be detected. The morphologies of fractured surfaces indicated that the wires mainly failed in shear and tensile modes, confirming tensile overloading of wires. Owing...
Abstract
A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis. The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what ultimately caused the rope to fail.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006871
EISBN: 978-1-62708-395-9
... R.A. , Dickie R.A. , Eds., Federation of Societies for Coatings Technology , 2005 , p 275 – 286 8. Wachtendorf V. , Schulz U. , Geburtig A. , Stephan I. , Mildew Growth on Automotive Coatings Influencing the Results of Outdoor Weathering ,” Mater Corros , Vol 63...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on the performance of polymeric materials, and the accelerated test methods that can be used to investigate those effects. These test methods are used to characterize material performance when subjected to specific, often controlled, and well-defined factors. The article also presents an overview of weathering instrument types that simulate outdoor stress factors.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
..., gross nonmetallic inclusions, brittle second-phase particles, weld defects, or arc strikes. Occasionally, brittle fractures are encountered, particularly in low-temperature environments or as a result of impact or a rapidly applied overload. Brittle fracture may thus be attributable to inappropriate...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001813
EISBN: 978-1-62708-180-1
... individually before selection of materials for springs or of suitable protective coatings. Common Failure Mechanisms Fatigue is the most common mechanism of failure in springs, as demonstrated by the examples in this article. Any of the causes noted in the section “Common Causes of Failures...
Abstract
This article discusses the common causes of failures of springs, with illustrations. Design deficiencies, material defects, processing errors or deficiencies, and unusual operating conditions are the common causes of spring failures. In most cases, these causes result in failure by fatigue. The article describes the operating conditions of springs, common failure mechanisms, and presents an examination of the failures that occur in springs.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001099
EISBN: 978-1-62708-214-3
..., galvanically-compatible fasteners and appropriately-applied and treated compatible coatings. Selected References Selected References • Forms of Corrosion , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 761 – 795 10.31399/asm.hb.v11.a0003548...
Abstract
Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated that the failures were the result of hydrogen embrittlement produced by galvanic corrosion and attendant evolution of hydrogen at the dissimilar junction, which was also the site of the highest tensile stress. Suggested measures for minimizing recurrences included use of lower-strength, galvanically-compatible fasteners and appropriately-applied and treated compatible coatings.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
.... Electrical Isolation The joint between dissimilar metals can be isolated to break the electrical continuity. Use of nonmetallic inserts, washers, fittings, and coatings at the joint between the materials will provide sufficient electrical resistance to eliminate galvanic corrosion. The design...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001731
EISBN: 978-1-62708-217-4
..., such as nonmetallic inclusions in the steel. Some of these may have been caused by excessive loads so that the inclusion only served as a nucleus for a crack that might have started in the same general area even if the inclusion had not been there. However, there have been failures in which the initial fracture had...
Abstract
Service failures have occurred in a number of aircraft parts made of quenched and tempered steel heat treated to ultimate tensile strengths of 260,000 to 280,000 psi. Some of these failures have been attributed to “delayed cracking” as a result of hydrogen embrittlement or to stress-corrosion. Because of the serious nature of the failures and because the mechanism of the fracture initiation is not well understood, unusually complete laboratory investigations have been conducted. Three of these investigations are reviewed to illustrate the methods used in studying failures in aircraft parts. The results of the laboratory studies indicate that unusual care is necessary in the processing and fabrication of ultra-high-strength steel and in the design and maintenance of the structures in which it is used.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... P.A. , The influence of nonmetallic inclusions on the mechanical properties of Steel: areview . J. Mater. Sci. 6 , 347 – 356 ( 1971 ) 10.1007/PL00020378 16. Gross T. , Micromechanisms of monotonic and cyclic crack growth, ASM Handbook , in Fatigue and Fracture , vol 19 ( ASM...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
1