Skip Nav Destination
Close Modal
Search Results for
non-heat-treatable aluminum alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-11 of 11 Search Results for
non-heat-treatable aluminum alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001140
EISBN: 978-1-62708-227-3
... Abstract Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached...
Abstract
Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached prior to wall penetration, which could have led to subsequent loss of pressure, resulting in explosion of the cylinder. It was recommended that more stress corrosion resistant alloys be used for sea diving applications. Furthermore, cylinders should have a reduced wall thickness that can be determined employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... on a macroscale, in the concentration of alloying elements from the surface to the center of an ingot or casting. Macrosegregation becomes more pronounced with increasing section size. Macrosegregation cannot be reduced by homogenization heat treatment. Segregation generally degrades the physical and chemical...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... are anodic to the main body of the metal and therefore less resistant to corrosion because of precipitated phases, depletion, enrichment, or adsorption. In wrought high-strength heat treatable aluminum alloys, paths of stress-corrosion cracks are always intergranular, because the thermal treatments...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... temper designation has been solution heat treated and artificially aged to maximum strength. For more information, refer to Properties and Selection: Nonferrous Alloys and Special-Purpose Materials , Volume 2 of the ASM Handbook , 1990. An aluminum alloy with a T7 temper designation has been solution...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001648
EISBN: 978-1-62708-234-1
... ). 1 , 2 Laboratory Examination Verification of Chemical Composition The results of the chemical analysis are presented in Table 1 . The coupling material was specified as type 416 stainless steel, and the analysis results verified this composition. 3 Type 416 is a heat treatable, free...
Abstract
During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early in the examination that the fracture involved hydrogen stress cracking. However, the nature of the corrosive attack suggested an interaction between the threaded coupling and biological organisms living in the freshwater environment of the pump shaft. The organisms had colonized on the coupling, changing the local environment and creating conditions favorable to hydrogen stress cracking. This paper describes the analysis of the fracture of the coupling and provides an example of how biologically induced corrosion can result in unexpected fracture of a relatively basic machine part.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... the chemical composition of the broken spindle, and its associated components.The stud, spacers, and washers were made from alloy AISI 430F (UNS S43020) free-machining stainless steel. Alloy 430F is a non heat-treatable ferritic stainless steel sulphurized to increase machinability. Except in thin sections...
Abstract
This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading and environment, and material selection and specification. The discussion considers whether this failure was an isolated incident or is likely to be a fleet-wide problem, and suggests ways to prevent reoccurrence.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... and localized embrittlement at the crack tips. The recommendation from this analysis was to perform stress-relief heat treatments to reduce residual-stress levels after welding non-pressure-retaining components to certain pressure shells. This treatment should reduce residual stresses and lessen...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... and alloy steels, the M f temperature is below 32 °F (0 °C), which means that it is likely that at the conclusion of the heat treating process there is as much as 5 to 15% of austenite remaining ( Ref 10 ). The amount of retained austenite exhibits significant effects on the magnitude of compressive...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... a broader engineering failure. Note that some non-fracture-failure scenarios may ultimately lead to fracture. Wear processes, for example, can ultimately lead to fracture by galling and/or fretting fatigue. Other examples include fatigue crack initiation at surface pits from corrosion, cyclic loading...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... reduced by improper heat treatment (e.g., incipient melting, temper embrittlement, improper age hardening) by processing (hydrogen embrittlement due to plating baths). Therefore, it is necessary to understand: Why some materials are inherently ductile or brittle, and How part geometry...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.