Skip Nav Destination
Close Modal
Search Results for
nominal composition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 183 Search Results for
nominal composition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047307
EISBN: 978-1-62708-223-5
... Abstract An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB...
Abstract
An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB. The microstructure consisted of eutectic chromium carbides (Cr7C3) in a matrix of retained austenite and martensite intermingled with secondary carbides. Analysis (visual inspection and 500x view of sections etched with Marble's reagent) supported the conclusion that the low hardness resulted from an excessive amount of retained austenite. This caused reduced wear resistance and thus rapid wear in service. Recommendations included avoiding an excessive austenitizing temperature and excessive cooling rates from the austenitizing temperature and controlling the chemical composition to avoid excessive hardenability for the section size involved.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0065827
EISBN: 978-1-62708-221-1
... with superior properties was initiated. The nominal composition of Fe-0.50C-0.30Mn-0.40Si-5.00Cr-2.00Mo was developed which achieved the goals of edge retention, resistance to softening under frictional heating, wear resistance, ease of heat treatment, dimensional stability in heat treatment, grindability...
Abstract
Failure analysis results were employed to identify a better alloy. Chipper knives used in the field to chip logs failed frequently. The knives were made of alloys with a composition of Fe-0.48C-0.30Mn-0.90Si-8.50Cr-1.35Mo-1.20W-0.30V. The development of tougher alloy steel with superior properties was initiated. The nominal composition of Fe-0.50C-0.30Mn-0.40Si-5.00Cr-2.00Mo was developed which achieved the goals of edge retention, resistance to softening under frictional heating, wear resistance, ease of heat treatment, dimensional stability in heat treatment, grindability, and low alloy cost. A chip harvester made from this composition was tested in field with older composition knives. It was found that the new knives outperformed the older knives. The key to the development was interpreted to be careful study of a number of failed knives with different problems used in different types of operations.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... Abstract The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling...
Abstract
The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface to the cooling holes, which led to relatively high thermal stresses at the holes located at the thicker sections of the airfoil, and stress concentration of 2.5 at the cooling hole and the presence of relatively high total strain (an inelastic strain of 1.2%) at the cooling hole surface. Recommendations include applying the specially designed methods given in this case study to estimate the metal temperature and stresses in order to predict the life of turbine blades under similar operating conditions.
Image
in Ductile Fracture of a Forged Steel Shaft at a Change in Section and at a Stainless Steel Weld
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
analysis of steels in shaft assembly Nominal composition of type 316 stainless steel (a) ASTM A105, grade 2, steel Shaft Type 316 stainless steel End cap Typical At fusion line At fusion line At center of weld In end cap Carbon 0.456 … 0.55 0.054 0.037 0.08 (b) Manganese 0.25
More
Image
Published: 01 January 2002
analysis of steels in shaft assembly Nominal composition of type 316 stainless steel (a) ASTM A105, grade 2, steel Shaft Type 316 stainless steel End cap Typical At fusion line At fusion line At center of weld In end cap Carbon 0.456 … 0.55 0.054 0.037 0.08 (b) Manganese 0.25
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001905
EISBN: 978-1-62708-217-4
... and a companion, intact retaining band to ARL for inspection and analysis. Chemical analysis, dimensional verification, hardness testing, metallography, and tensile testing were performed to determine the cause for premature failure. The chemical composition of the components was compatible with the nominal...
Abstract
A bomb retaining ring fabricated from type 302 stainless steel unwrapped during a practice flight, causing the bomb fins to deploy. The retaining ring was able to unwrap itself because it was thinner and softer than required. Hardness testing, metallography, and tensile testing confirmed that the component was in the annealed condition and not in the required work-hardened 1/4-hard condition.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
... alloy steel with the following nominal composition: Element Composition, % Carbon 0.42 Manganese 0.78 Phosphorus 0.025 max Sulfur 0.025 max Silicon 0.26 Chromium 0.87 Nickel 2.08 Molybdenum 0.28 Vanadium 0.25 The ductile-to-brittle transition...
Abstract
The splined shaft (1040 steel, heat treated to a hardness of 44 to 46 HRC and a tensile strength of approximately 1448 MPa, or 210 ksi) from a front-end loader used in a salt-handling area broke after being in service approximately two weeks while operating at temperatures near -18 deg C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high. Recommendations include redesign of the fillet radius to a minimum of 1.6 mm (0.06 in.) and a maximum surface finish in the spline area of 0.8 microns. Material for the shafts should be modified to a nickel alloy steel, heat treated to a hardness of 28 to 32 HRC before machining.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001757
EISBN: 978-1-62708-241-9
... is consistent with 403 stainless steel. Quantitative chemical compositions of compressor rotor blades are summarized in Table 2 for comparison with the nominal chemical composition of STS403. The measured composition seems to be in agreement with the nominal composition of STS403. Nominal and measured...
Abstract
Rotor blades in the compressor section of a J79 engine had failed. Optical, stereoscopic, microhardness testing, and SEM examinations were conducted to determine the cause. The blades were made of STS403 and were used uncoated. They were damaged over an extensive area, from the 15th through the 17th compressor stages, as were stator vanes and casing sections. The fractured surface of the 17th blade showed multiple origins along with secondary cracking and extensive propagation that preceded separation. The metallographic analysis of the microstructure suggested work hardening. Based on the results, the cause of the fractured blade was high-amplitude fatigue due to severe stall. After normal engine usage of five months, the blade fractured sending fragments throughout the combustion and turbine sections.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001248
EISBN: 978-1-62708-221-1
... in the teeth of a spur gear in the transmission system of heavy duty tracked vehicles. The gears are made from a case hardening nickel-chromium-molybdenum type steel with the following nominal composition in wt.-%: Carbon 0.20 max. Manganese 0.50/1.50 Nickel 1.00/1.50 Chromium 0.75/1.25...
Abstract
Failure occurred in the teeth of a case-hardening Ni-Cr-Mo alloy steel spur gear in the transmission system of heavy duty tracked vehicles. The defects were in the nature of seizure on the involute profile. Scrutiny of the transmission system showed there might be choking in the lubricating oil line. Such would cause seizure of the gears and damage. The incidence of such defects stopped after corrective measures were taken.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001365
EISBN: 978-1-62708-215-0
... . The as-deposited weld filler metal composition is consistent with the nominal 12% Cr requirements. Chemical composition of the damaged impeller Table 1 Chemical composition of the damaged impeller Composition, wt% Chemical requirements for A743 grade CA-15 stainless steel Element Damaged...
Abstract
An investigation was conducted to determine the cause of numerous cracks and other defects on the surface of a cast ASTM A743 grade CA-15 stainless steel main boiler feed pump impeller. The surface was examined using a stereomicroscope, and macrofractography was conducted on several cross sections removed from the impeller body. Areas that appeared to have the most severe surface damage were sectioned, fractured open, and examined using SEM. The chemistry of the impeller and an apparent repair weld were also analyzed. The examination indicated that the cracks were shrinkage voids from the original casting process. Surface repair welds had been used to fill in or cover over larger shrinkage cavities. It was recommended that more stringent visual and nondestructive examination criteria be established for the castings.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001359
EISBN: 978-1-62708-215-0
.... Pertinent Specifications The blades were made of titanium alloy IMI 550, with a nominal composition of 4% Al, 4% Mo, were manufactured by the closed-die forging process. Targeting bosses flash buttons at the extremities of the blades serve as reference points for dimensional control and are later...
Abstract
The cause of low fatigue life measurements obtained during routine fatigue testing of IMI 550 titanium alloy compressor blades used in the first stage of the high-pressure compressor of an aeroengine was investigated. The origin of the fatigue cracks was associated with a spherical bead of metal sticking to the blade surface in each case. Scanning electron microscope revealed that the cracks initiated at the point of contact of the bead with the blade surface. Energy-dispersive X-ray analysis indicated that the bead composition was the same as that of the blade. Detailed investigation revealed that fused material from the blade had been thrown onto the cold blade surface during a grinding operation to remove the targeting bosses from the forgings, thereby causing local embrittlement. It was recommended that extreme care be taken during grinding operations to prevent the hot, fused particles from striking the blade surface.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090959
EISBN: 978-1-62708-222-8
... structure suggests that the austempering heat treatment was performed too close to the nominal martensite start temperature. Recommendations included raising the austempering salt-bath temperature 56 deg C (100 deg F) to account for localized compositional variation. Austempering Lawn mower blades...
Abstract
Mower blades manufactured from grade 1566 high-manganese carbon steel failed a standard 90 deg test. The blades had been austempered and reportedly fractured in a brittle manner during testing. The austempering treatment was intended to produce a bainitic microstructure, but investigation (visual inspection, 2% nital etched 8.9x/196x images) showed that the typical core microstructure contained alternating bands of martensite and bainite. The conclusion was that the nonuniform microstructure was likely responsible for the atypical brittle behavior of the blades, and the observed structure suggests that the austempering heat treatment was performed too close to the nominal martensite start temperature. Recommendations included raising the austempering salt-bath temperature 56 deg C (100 deg F) to account for localized compositional variation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001256
EISBN: 978-1-62708-218-1
... type of nitriding steel to the following nominal composition in wt.%: Carbon 0.2–0.3 Silicon 0.10–0.35 Manganese 0.4–0.65 Nickel 0.4 maximum Chromium 2.9–3.5 Molybdenum 0.4–0.7 Sulphur 0.05 maximum Phosphorus 0.05 maximum The defects which were initially...
Abstract
There was a large incidence of surface defects on the crank pins and journals and other areas of crank shafts of a high power automotive engine. The steel used was a Cr-Mo type of nitriding steel. Metallographic observations conclusively proved that the defective areas were entrapment of foreign bodies, resulting from steel making/deoxidizing/teeming stages. The occasionally globular nature of the foreign particles suggested these were formed at the liquid condition of the steel. The ratio of Mn-Si as seen on electron probe microanalysis also suggested the globules high in Mn content might have resulted in deoxidizing stage. Particularly the absence of Fe in some areas in the inclusion was indicative of precipitation deoxidation by ferromanganese/ferrosilicon. The defects apparently did not have time to coalesce and rise up to the top.
Image
Published: 01 January 2002
Fig. 20 Specific wear rate as a function of fiber composition in hybrid composite ( L 93 N, velocity V ) 0.5 m/s, nominal V f 0.57 with dotted curve for calculated values as per equation in Ref 59 . IROM, inverse rule of mixture; LROM, linear rule of mixture. Source: Ref 59
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001073
EISBN: 978-1-62708-214-3
... produced replacement sprockets wore excessively. Pertinent Specifications Specifications for the original sprockets were unknown. AISI 1045 (nominal composition of 0.45% C and 0.7% Mn, not heat treated) was specified for the replacement sprockets. Specimen Selection Two unused sprockets were...
Abstract
Replacement sprockets installed on chain drive shafts for winding fibers exhibited excessive wear. Metallographic and chemical analyses conducted on the original and replacement sprockets showed that the material of the replacement sprocket was 1020 low-carbon steel, whereas the original (and specified) material was medium-carbon 1045 steel. The low-carbon steel also had lower hardness because of a lower pearlite fraction in the microstructure. It was recommended that replacement sprockets be made of normalized 1045 steel. It was further suggested that wear resistance could be improved by through hardening or induction surface hardening of the teeth.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001029
EISBN: 978-1-62708-214-3
... The actuator castings were manufactured per AMS 4218, class 2, grade C and were not 100% radiographically inspected. The chemical composition requirements for A356 aluminum alloy were met (nominal composition, Al-7.0Si-0.35Mg). Visual Examination of General Physical Features One of the as-received...
Abstract
Two investment-cast A356 aluminum alloy actuators used for handles on passenger doors of commercial aircraft fractured during torquing at less than the design load. Visual examination showed that cracking had occurred through a machined side hole. Fractography revealed that the cracks originated in hot tear locations in the castings. Microprobe analysis of fracture surfaces in the hot tear region indicated a much higher silicon-to-aluminum ratio compared with the overload fracture area. No microstructural anomalies related to the failure were found during metallographic examination. It was concluded that the strength of the castings had been compromised by the presence of the casting defects. Modification of the gating system for casting was recommended to eliminate the hot tear zone. It was also suggested that the balance of the castings from the same manufacturing lot be radiographically inspected.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
... Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion during fluxed pellet production. They were made from HH grade stainless steel with a nominal composition of 0.35% C, 25% Cr, and 12% Ni, with the balance iron. The processing of taconite iron...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001521
EISBN: 978-1-62708-229-7
... . Nominal composition (in wt%) is 70Cu, 29Zn, 1Sn, and 0.03As. Tin and arsenic are added to inhibit dezincification. Brass was chosen for the tubes because of its excellent thermal conductivity. The tubes are furnished in the annealed condition and have minimum yield strength of 100 MPa (15 ksi) and tensile...
Abstract
Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. The presence of a tensile stress, intergranular cracks, and a corrosion product suggested the tube failures resulted from stress-corrosion cracking. The main corrosion product was cupric hydroxychloride. In addition to switching to a more corrosion-resistant alloy, extreme care should be taken in the manufacturing of the replacement tube bundles to avoid imparting any residual tensile stresses in the tubing. Analyses of city and spring-pit water were recommended also, to determine which contained the least-harmful corrosive chemicals.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001534
EISBN: 978-1-62708-220-4
...), respectively ( Ref 1 ). The yield strength and ultimate tensile strength of these materials are reported as 241 and 414 MPa, respectively ( Ref 2 ). Their nominal chemical compositions are given in Table 1 . Nominal chemical compositions of materials of construction Table 1 Nominal chemical...
Abstract
A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its root (lack of penetration). Component failure had started from this weld defect. The hydrogen absorbed during welding facilitated crack initiation from this weld defect during storage of the component after welding. Poor weld toughness at the low operating temperature facilitated crack growth during startup, culminating in catastrophic failure as soon as the crack exceeded critical length.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001287
EISBN: 978-1-62708-215-0
... to coordinate the lift. Each air cylinder is mounted on trunnion bearings to allow free rotation during operation. The dimensions of the shaft are shown in Fig. 2 . The shaft has a nominal diameter of 44 mm ( 1 3 4 in.) for most of its total length of 1090 mm ( 42 3 4 in.). Both ends...
Abstract
A recurring piston shaft failure problem on the billet-loading tray of an extrusion press was investigated. Two shafts fractured within a period of 10 days. The shaft was machined from normalized EN3 (AISI C1022) steel stock without further treatment. Visual, microstructural, chemical, and mechanical (hardness and tensile properties) analyses of failed shaft specimens were conducted. The examinations showed that the shafts had failed by fatigue. It was recommended that a low-alloy steel (e.g., 3% Ni-Cr) in the hardened and tempered condition and subjected to shot-peening surface-hardening treatment be used. The provision of a stop to reduce bending stresses was also recommended.
1