Skip Nav Destination
Close Modal
Search Results for
nodular graphite
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 35 Search Results for
nodular graphite
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Microstructural Features of Prematurely Failed Hot-Strip Mill Work Rolls: Some Studies in Spalling Propensity
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 1 Optical micrograph showing mostly nodular graphite morphology in the shell region of roll sample HSM #14; magnification 100×
More
Image
in Microstructural Features of Prematurely Failed Hot-Strip Mill Work Rolls: Some Studies in Spalling Propensity
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 7 EPMA scans of nodular graphite particles in roll sample HSM #9 showing (a) BSE image, (b) C x-ray map, (c) Si x-ray map, (d) Cr x-ray map, and (e) Ni x-ray map; magnification 180×
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089657
EISBN: 978-1-62708-233-4
... as a means of absorbing recoil energy. During operation, the piston is stressed in tension, pulled by oil pressure on one end and the opposing force of the gun tube on the other. The casting specification stipulated that the graphite be substantially nodular and that metallographic test results be provided...
Abstract
The gun mount used in two types of self-propelled artillery consists of an oil-filled recoil cylinder and a sand-cast (MIL-I-11466, grade D7003) ductile-iron piston that connects to the gun tube through a threaded rod. The piston contains several orifices through which oil is forced as a means of absorbing recoil energy. During operation, the piston is stressed in tension, pulled by oil pressure on one end and the opposing force of the gun tube on the other. The casting specification stipulated that the graphite be substantially nodular and that metallographic test results be provided for each lot. Investigation (visual inspection, fatigue testing, 0.25x/0.35x/50x magnifications, 2% nital etched 60x/65x magnifications, and SEM views) showed that most of the service fractures occurred in pistons containing vermicular graphite. Recommendations included ultrasonic testing of pistons already in the field to identify and reject those containing vermicular graphite. In addition, metallographic control standards were suggested for future production lots.
Image
Published: 15 January 2021
Image
Published: 01 January 2002
Image
Published: 01 January 2002
for graphitization is for conversion of one-half of the carbon in aluminum-deoxidized 0.5% Mo cast steel to nodular graphite ( Ref 10 ).
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 35 Microstructure of heat-affected zone on longitudinal weld sample No. 2 showing nodular graphite. Etched in 5% nital. Original magnification: 80×
More
Image
in Failure of High-Temperature Rotary Valve Due to Expansion and Distortion Caused by the Effects of Excessive Operating Temperature
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 3 Microstructure of the heavy section adjacent to the gas passage in the rotor. (a) General structure. 60x. (b) Nodular graphite in a ferrite matrix with some decomposed pearlite. 300x. Both etched with nital
More
Image
in Ductile Overload Failure of a T-Hook That Fractured in Service
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 5 Microstructures from the T-hook. (a) At the fracture surface, nodular graphite and a ferrite matrix. 27×. (b) At the shrinkage site, a ferrite matrix with a surface oxide film. 110×. (c) and (d) Higher magnification views of the fracture surface and of the interior of the part
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
... Graphite Characteristics Out of ten spalled samples pertaining to the shell region ( i.e. , where the diameter at spalling was >750 mm), nodular graphite morphology was observed in the optical microstructures of four roll samples: HSMs #7, 9, 11, and 14, which gave an average roll life of 101,888...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
.... 60x. (b) Nodular graphite in a ferrite matrix with some decomposed pearlite. 300x. Both etched with nital Fig. 4 Oxide layer on the outside diameter of the rotor. Etched with nital. 100x The thin edge of the rotor adjacent to the gas passage exhibited a ferritic matrix...
Abstract
An experimental high-temperature rotary valve was found stuck due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been high due to overfueled conditions. Both the rotor and housing in which it was stuck were annealed ferritic ductile iron similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure. The microstructure of the rotor was examined in three regions. The shaft material, the heavy section next to the gas passage and the thin edge of the rotor adjacent to the gas passage. The excessive gas temperatures were responsible for the expansion and distortion that prevented rotation of the rotor. Actual operating temperatures exceeded those intended for this application. The presence of transformation products in the brake-rotor edge indicated that the lower critical temperature had been exceeded during operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089646
EISBN: 978-1-62708-235-8
... Abstract Nodular cast iron crankshafts and their main-bearing inserts were causing premature failures in engines within the first 1600 km (1000 mi) of operation. The failures were indicated by internal noise, operation at low pressure, and total seizing. Concurrent with the incidence of engine...
Abstract
Nodular cast iron crankshafts and their main-bearing inserts were causing premature failures in engines within the first 1600 km (1000 mi) of operation. The failures were indicated by internal noise, operation at low pressure, and total seizing. Concurrent with the incidence of engine field failures was a manufacturing problem: the inability to maintain a similar microfinish on the cope and drag sides of a cast main-bearing journal. Investigation supported the conclusion that the root cause of the failure was carbon flotation due to the crankshafts involved in the failures showing a higher-than-normal carbon content and/or carbon equivalent. Larger and more numerous cope side graphite nodules broke open, causing ferrite caps or burrs. They then became the mechanism of failure by breaking down the oil film and eroding the beating material. A byproduct was heat, which assisted the failure. Recommendations included establishing closer control of chemical composition and foundry casting practices to alleviate the carbon-flotation form of segregation. Additionally, some nonmetallurgical practices in journal-finishing techniques were suggested to ensure optimal surface finish.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
.... (a) At the fracture surface, nodular graphite and a ferrite matrix. 27×. (b) At the shrinkage site, a ferrite matrix with a surface oxide film. 110×. (c) and (d) Higher magnification views of the fracture surface and of the interior of the part, respectively. Both 215×. All etched with nital Close examination...
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0090965
EISBN: 978-1-62708-221-1
... microstructure of the frame showing degenerate graphite morphology rather than the intended nodular structure evident in the core. Unetched. 30×. (b) The typical frame microstructure also exhibits high levels of ferrite in the undercooled surface graphite. 2% nital etch. 30× Conclusions The crusher...
Abstract
The upper frame from a large cone crusher failed in severe service after an unspecified service duration. The ductile iron casting was identified as grade 80-55-06, signifying minimum properties of 552 MPa (80 ksi) tensile strength, 379 MPa (55 ksi) yield strength, and 6% elongation. Investigation (visual inspection, chemical analysis, unetched 30x images, and 2% nital etched 30x images) was difficult because the fracture surface of the frame section was obliterated by postfracture corrosion. Repeated attempts at cleaning using progressively stronger chemicals revealed that no telltale fracture morphology remained. However, the investigation supported the conclusion that the crusher frame failed via brittle overload fracture, likely due to excessive service stresses and substandard mechanical properties. Recommendations included additional quality-control measures to provide better spheroidal graphite morphology at the frame surface.
Image
in Failure of a Ductile Iron Cone- Crusher Frame
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 1 Failure of a ductile iron cone-crusher frame. (a) Near-surface microstructure of the frame showing degenerate graphite morphology rather than the intended nodular structure evident in the core. Unetched. 30×. (b) The typical frame microstructure also exhibits high levels of ferrite
More
Image
Published: 01 January 2002
Fig. 18 Failure of a ductile iron cone-crusher frame ( example 7 ). (a) Near-surface microstructure of the frame showing degenerate graphite morphology rather than the intended nodular structure evident in the core. Unetched. 30×. (b) The typical frame microstructure also exhibits high levels
More
Image
Published: 15 January 2021
Fig. 14 Failure of a ductile iron cone-crusher frame (Example 7). (a) Near-surface microstructure of the frame showing degenerate graphite morphology rather than the intended nodular structure evident in the core. Unetched. Original magnification: 30×. (b) The typical frame microstructure also
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... of ductile cast iron Black spots G 142 (a) Inclusions in the form of oxide skins, most often causing a localized seam Oxide inclusion or skins, seams G 143 (a) Folded films of graphitic luster in the wall of the casting Lustrous carbon films, or kish tracks G 144 Hard inclusions...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Image
in Fracture of Ductile-Iron Pistons for a Gun Recoil Mechanism as Affected by Type of Graphite
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
0.35x. (c) Flat-plan view showing composite pattern of fractures in several pistons. (d) Fracture surface showing mottled structure caused by vermicular graphite; arrow points to a fatigue zone. Approximately 0.25x. (e) to (h) Micrographs showing graphite with nodularity of rank 2, at 50x (e); rank 8
More
Image
Published: 01 January 2002
0.35×. (c) Flat-plan view showing composite pattern of fractures in several pistons. (d) Fracture surface showing mottled structure caused by vermicular graphite; arrow points to a fatigue zone. Approximately 0.25×. (e) to (h) Micrographs showing graphite with nodularity of rank 2, at 50× (e); rank 8
More
1