1-20 of 248 Search Results for

nickel-base alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0091757
EISBN: 978-1-62708-232-7
... the chemical makeup of these phases. Fig. 1 Sulfidation and chloridation attack on nickel alloy of charcoal-regeneration kiln. See also Fig. 2 . Region 1 is an area of chromium sulfide islands (dark phase) interspersed in chromium-depleted region (bright phase). Region 2 has angular phase (consisting...
Image
Published: 01 January 2002
Fig. 3 SEM image of fracture surface of nickel-base alloy (Inconel 751, annealed and aged) after stress rupture (730 °C, or 1350 °F; 380 MPa, or 55 ksi; 125 h). (a) Low-magnification view, with picture width shown at approximately 0.35 mm (0.0138 in.) from original magnification of 250×. (b More
Image
Published: 01 January 2002
Fig. 9 Gamma-prime overaging in a nickel-base alloy turbine blade material. (a) SEM micrograph of the blade material, showing the breakdown of the eutectic gamma prime (5) and the spreading of the coarse gamma prime. Smaller particles of fine aging gamma prime (4), which would appear between More
Image
Published: 01 January 2002
Fig. 11 Hot corrosion attack of René 77 nickel-base alloy turbine blades. (a) Land-based, first-stage turbine blade. Notice deposit buildup, flaking, and splitting of leading edge. (b) Stationary vanes. (c) A land-based, first-stage gas turbine blade that had type 2 hot corrosion attack. (d More
Image
Published: 01 January 2002
Fig. 19 Observation of failed nickel-base alloy (Waspaloy) specimen after rotating bend fatigue. (a) Macro view. (b) Micrograph. Source: Ref 43 More
Image
Published: 15 January 2021
Fig. 3 Scanning electron microscopy image of fracture surface of nickel-base alloy (Inconel 751, annealed and aged) after stress rupture (730 °C, or 1350 °F; 380 MPa, or 55 ksi; 125 h). (a) Low-magnification view, with picture width shown at approximately 0.35 mm (0.0138 in.) from original More
Image
Published: 15 January 2021
Fig. 7 Sulfidation and chloridation attack on IN-601 nickel-base alloy of charcoal-regeneration kiln (see also Fig. 8 ). Region 1 is an area of chromium sulfide islands (dark phase) interspersed in a chromium-depleted region (bright phase). Region 2 has an angular phase (consisting mostly More
Image
Published: 15 January 2021
Fig. 8 Sulfidation and chloridation attack on IN-601 nickel-base alloy of charcoal-regeneration kiln at higher magnification (~44×). Lower right is region of chromium sulfide islands (dark phase) interspersed in chromium-depleted region (bright phase). Middle region has an angular phase More
Image
Published: 15 January 2021
Fig. 19 Observation of failed nickel-base alloy (Waspaloy) specimen after rotating-bend fatigue. (a) Macro view. (b) Micrograph. Source: Ref 53 More
Image
Published: 01 December 2019
Fig. 7 Typical microstructure for the nickel-base alloy of intact nut. Magnification: 200× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0091756
EISBN: 978-1-62708-236-5
... Abstract An alloy IN-690 (N06690) incinerator liner approximately 0.8 mm (0.031 in.) thick failed after only 250 h of service burning solid waste. Investigation supported the conclusion that the root cause of the failure was overfiring during startup and sulfidation of the nickel-base alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046956
EISBN: 978-1-62708-232-7
... Abstract A brazing-furnace muffle 34 cm (13 in.) wide, 26 cm (10 in.) high, and 198 cm (78 in.) long, was fabricated from nickel-base high-temperature alloy sheet and installed in a gas-fired furnace used for copper brazing of various assemblies. The operating temperature of the muffle...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
... been applied in 1966, when these coatings were relatively new. It is evident that maintaining the integrity of a protective coating could significantly increase the life of a nickel-base alloy blade operating in a hot and corrosive environment. Corrosion products Diffusion coatings Turbine...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
... that were both welded to a flange. The case, stiffener, flange, and weld deposit were all of nickel-base alloy 718. It was observed that a manual arc weld repair had been made along almost the entire circumference of the original weld. Investigation (visual inspection, 0.5x macrographs, and 10x etched...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
.... However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001387
EISBN: 978-1-62708-215-0
... material, such as nickel, nickel-base alloy, or stainless steel, was recommended. Anodes Electrolytic cells Nuclear reactor components 1010 ASTM A519 MT1010 UNS G10100 Uniform corrosion Background Several electrolysis cells in a heavy-water up-grading plant began malfunctioning because...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001566
EISBN: 978-1-62708-229-7
... of chloride-induced SCC in austenitic stainless steels. The failure resulted from chloride-induced SCC, possibly assisted by cyclic stress. The recommendation for alternate material for the desuperheater nozzle included nickel base alloys per ASTM B 564, Grades 600 or 800 titanium alloy per ASTM B 367, Grades...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090881
EISBN: 978-1-62708-229-7
... Abstract A power plant using two steam generators (vertical U-tube and shell heat exchangers, approximately 21 m (68 ft) high with a steam drum diameter of 6 m (20 ft)) experienced a steam generator tube rupture. Each steam generator contained 11,012 Inconel alloy 600 (nickel-base alloy) tubes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... springs could have been made from a corrosion-resistant metal—for example, a 300 series austenitic stainless steel or a nickel-base alloy, such as Hastelloy B or C. Selected References Selected References • Maker J.H. , Failures of Springs , Failure Analysis and Prevention , Vol 11...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types...