Skip Nav Destination
Close Modal
Search Results for
near-alpha titanium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 24 Search Results for
near-alpha titanium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0090030
EISBN: 978-1-62708-217-4
... of a large fatigue crack near the bore emanating from a hard alpha (HA) defect. An HA defect can result from occasional upsets during the vacuum melting process of the titanium. These nitrogen-rich alpha titanium anomalies are brittle and often have associated microcracks and microvoids ( Fig. 2 ). Fig...
Abstract
A DC-10 in transit from Denver to Chicago experienced failure of the center engine. The titanium compressor disk burst and severed the hydraulics of the plane. Investigation supports the conclusion that the cause of the disk rupture was the presence of a large fatigue crack near the bore emanating from a hard alpha (HA) defect. Such defects can result from occasional upsets during the vacuum melting of titanium. These nitrogen-rich alpha titanium anomalies are brittle and often have associated microcracks and microvoids. A probabilistic damage tolerance approach was recommended to address the anomalies, with the objective of enhancing rotor life management practices. The ongoing work involves the use of fracture mechanics and software (called DARWIN.) optimized for damage tolerant design and analysis of metallic structural components.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
... the microstructural characteristics of titanium and titanium alloys. Oxygen is an alpha phase stabilizer and is a strengthener in alpha titanium alloys (unalloyed titanium), but too much oxygen causes embrittlement of the alpha phase. The presence of an alpha case in an alpha-beta titanium alloy, such as Ti-6Al-4V...
Abstract
Nondestructive metallographic examination of materials frequently must be performed on-site when the component in question cannot be moved or destructively examined. Often, it is imperative that specific microstructural information (i.e., material type, heat treatment condition, homogeneity, etc.) be obtained either before initial use of a component, or before the use of a component can be safely resumed. In this paper, the use of standard metallurgical laboratory equipment, and the procedures required to conduct nondestructive on-site metallographic analyses of engineering materials, is presented. As an example, the materials and metallographic techniques employed in an actual on-site investigation of a gas tungsten-arc weldment joining two large diameter Ti-6Al-4V alloy cylinders are discussed in depth to illustrate what can be accomplished.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001782
EISBN: 978-1-62708-241-9
... of the etched cross section revealed an acicular microstructure consistent with an alpha-stabilized titanium-base alloy. The orientation of the striations indicated that the progressive failure initiated along the top of the innermost concentric circle groove impression on the interior surface of the club...
Abstract
The head on a golf club driver developed multiple cracks during normal use. The head was a hollow shell construction made from a titanium alloy. Analysis and additional investigation revealed a progressive failure that initiated on the interior surface of the face plate along a deep, concentric groove created during a press forming operation. It was also determined that atmospheric contamination occurred during the welding of the head, causing embrittlement, which may have also contributed to the failure. Recommendations were made addressing the problems that were observed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001801
EISBN: 978-1-62708-241-9
... fatigue crack growth rates ASTM F136 (alpha-beta titanium alloy) UNS R56401 ...
Abstract
Both rods in a Harrington rod cervical stent failed after a short time in service. Metallurgical analysis revealed a significant number of notches as well as enlarged grain size in one of the two rods, rough shallow-cracked surfaces along the bend profiles, possible signs of corrosion, and fractures (on both rods) near indentations imparted by retaining clamps. The observations suggest that surface roughness and bending defects initiated cracking that led to the fatigue failure of the compromised rod, followed some time later by the overload fracture of the second rod.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... products. These laminations may not be immediately evident following rolling but may become apparent during a subsequent forming operation. The occurrence of laminations is most prevalent in flat-rolled sheet products. In addition to the primary pipe near the top of the ingot, secondary regions...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
.... Chesnutt J.C. and Williams J.C. : “ Comments on the Electron Fractography of Alpha Titanium ,” Metall. Trans. A , 1977 , 8 ( 3 ), pp. 514 – 515 10.1007/BF02661765 . Selected references Selected references • Friction and Wear of Medical Implants and Prosthetic Devices , Materials...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... case in titanium (oxygen contamination) becomes very brittle and can act as a damage-initiation site ( Fig. 24 ). Fig. 24 (a) Etched Waspaloy superalloy. (b) Ti-6Al-4V with alpha case. 2% HF etch Sensitization Austenitic stainless steels can become more susceptible to corrosion when...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... The operating temperature of the duct surrounded by the clamp was 425 to 540 °C (800 to 1000 °F). The life of the clamp was expected to equal that of the aircraft. After 2 to 3 years of service, the clamp fractured in the area adjacent to the slot near the end of the strap ( Fig. 8a ) and was returned...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... caustic solutions High-nickel alloys High-purity steam Alpha brass Ammoniacal solutions, chloramine, amine Aluminum alloys Aqueous chloride, bromide, and iodide solutions Titanium alloys Aqueous chloride, bromide, and iodide solutions; organic liquids; N 2 O 4 Magnesium alloys Aqueous...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... of the roller, following the interface between case and core. Fig. 6 Fracture surface of a carburized and hardened steel roller. As a result of banded alloy segregation, circumferential fatigue fracture initiated at a subsurface origin near the case-core interface (arrow). Excessive segregation...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... as the overload crack grows. Source: Ref 29 Fig. 7 Macroscale brittle fracture in tensile loading. A light ring is visible around the outside circumference. A faint radial pattern is visible from approximately 11 to 4 o'clock and running towards a dark spot near 9:00 The roughest area on the fracture...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... or the formation of small voids. Blister formation in aluminum is different from that in ferrous alloys in that it is more common to form a multitude of near-surface voids that coalesce to produce a large blister. Intergranular or transgranular cracking of aluminum by hydrogen embrittlement may be difficult...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... core as the overload crack grows. Source: Ref 6 Fig. 8 Macroscale brittle fracture in tensile loading. A light ring is visible around the outside circumference. A faint radial pattern is visible from approximately 11 to 4 o’clock and running toward a dark spot near 9 o’clock. The roughest...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... of a Nickel-Base Alloy Incinerator Liner An alloy IN-690 (N06690) incinerator liner failed after only 250 h of service burning solid waste. The root cause of the failure was overfiring during startup and sulfidation of the nickel-base alloy. Figure 3 shows the perforation of the liner near a patch made...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... • Multiple intergranular fissures covered with reaction scale• Grain faces may show porosity Metallographic inspection, 50–1000× (cross section) • Grain distortion and flow near fracture• Irregular, transgranular fracture • Little distortion evident• Intergranular or transgranular• May relate to notches...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
.... The blades of the subject gas turbine were solid (uncooled) and therefore operated at a metal temperature, which was near the gas path temperature; it is not expected for the metal temperatures of the gas path components to reach a temperature near the melting point of the alloys. The turbine inlet...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... at magnifications above 500× • Overload zone: may be either ductile or brittle • Multiple intergranular fissures covered with reaction scale • Grain faces may show porosity Metallographic inspection, 50–1000× (cross section) • Grain distortion and flow near fracture • Irregular, transgranular fracture...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
..., with the potential to produce high-resolution, single-material components with near-isotropic properties. In terms of metal parts, binder jetting has produced metal AM parts for years. However, because it is an “indirect” AM process (involving a depowdering and sintering process), it has not received the research...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... for certifying new designs of titanium rotors (see the section “Case Histories: Examples of the Use of Probabilistic Analysis” and “Example 1: Probabilistic Damage Tolerance Analysis of Gas Turbine Rotors” in this article) ( Ref 25 , 26 ). Elements of Probabilistic Analysis A probabilistic analysis...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
1