1-20 of 48 Search Results for

molten salt corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 15 January 2021
Fig. 23 Effect of molten salt on hot corrosion at 700 °C (1290 °F) in air. With the lower melting temperatures of salt mixtures, the corrosion rate increases with increasing volume fraction of liquid. Courtesy of Z. Tang and B. Gleeson, University of Pittsburgh More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
... Abstract A fused-salt electrolytic-cell pot containing a molten eutectic mixture of sodium, potassium, and lithium chlorides and operating at melt temperatures from 500 to 650 deg C (930 to 1200 deg F) exhibited excessive corrosion after two months of service. The pot was a welded cylinder...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
... accumulates with each cycle through the furnace. Metallographic and chemical analyses have clearly established that the grate bar degradation was primarily caused by hot corrosion by molten salts. The molten salt destroyed the ability of the material to maintain a protective oxide scale as a barrier...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
... of corrosion was oxidation, chlorination, or sulphuration. As to the pitting corrosion on the outer wall, molten salt corrosion probably occurred at the early stage of reaction given the composition of flue gas during the service life of the sample tube [ 10 ]. This corrosion may have also been caused by SO 2...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046926
EISBN: 978-1-62708-232-7
..., but that contamination of the molten salts may have been responsible for the severe corrosive attack and chromium depletion, particularly in the grain boundaries, in the general area where failure occurred. Fig. 1 Specimen from an RA 330 alloy salt pot that failed because of intergranular corrosion and chromium...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001333
EISBN: 978-1-62708-215-0
... within the tube) and then fractured, which allowed molten salt to flow into the tube. Chemical processing industry Chemical reactors Fused salts, environment Overheating Tubing St 35.8 High-temperature corrosion and oxidation Background A low-carbon steel (St35.8) tube in a chemical...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... or the presence of S in the air at some industrial sites. Hot corrosion may be defined as accelerated corrosion resulting from the presence of salt contaminants, such as Na2SO 4 , NaCl, and V 2 O 5 , which combine to form molten deposits that will damage the protective surface oxides. There is a general...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
.... Corrosion by Molten Salts Comparative information is presented in Table 2 on the corrosion resistance to fused salts, alkalis, and low-temperature oxides for two different classes of structural ceramics, oxides and nonoxides. The data in Table 2 show that both dense oxides and nonoxides...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001357
EISBN: 978-1-62708-215-0
... used was not adequate to guarantee the operating life of the blades due to excess sulfur trioxide, carbon, and sodium in the combustion gases, which caused pitting. A molten salt environmental cracking mechanism was also a factor and was enhanced by the working stresses and by the presence of silicon...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... that will prevent wetting and capillary flow of the molten braze filler metal. Anomalies such as porosity, voids, inclusions, and lack of braze filler metal (incomplete brazing) can be eliminated or minimized by implementing compatible cleaning operations before assembly and brazing. The use of fluxes or salts...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001396
EISBN: 978-1-62708-229-7
... evidence which argues against this view is that microscopical examination of samples of tubes affected by on-load corrosion shows no indications of structural changes attributable to overheating. ( c ) Film Boiling It is presumed that local hot spots form, leading to concentration of boiler salts...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... Table 2 for compositions of layers) Investigation Inspection of the piping between the heat exchanger in the salt bath and the molecular-sieve bed revealed a hole in the tee fitting ( Fig. 3a, b ) and a corrosion product (scale) on the inner surface of the pitting. This scale occurred in four...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... enhanced when the hydrogen is present in combination with residual or applied tensile stresses. Many types of hydrogen damage are not due to corrosion processes at all. However, because hydrogen damage has many similarities regardless of the source of the hydrogen, damage processes caused by corrosion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... the load-carrying capacity of the metal is reduced due to the presence of hydrogen. The detrimental effects of hydrogen on metals are often enhanced when the hydrogen is present in combination with residual or applied tensile stresses. Many types of hydrogen damage are not really due to corrosion processes...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... on electrochemically induced driving forces to cause rapid attack) Biological corrosion (which is a microbial-assisted form of attack that can manifest itself as uniform corrosion by forming weak or cathodic oxides, or it can also produce a localized form of attack) Molten salt corrosion and liquid-metal...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
...) Molten salt corrosion and liquid metal corrosion (which have become more of a concern as the demand for higher-temperature heat-transfer fluids increases) High-temperature (gaseous) corrosion Corrosive attack for these conditions is not necessarily restricted to just uniform thinning. Other...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... by metallurgical defects C 410 Separation along grain boundaries C 411 (a) Separation along grain boundaries of primary crystallization Conchoidal or “rock candy” fracture C 412 (a) Network of cracks over entire cross section Intergranular corrosion Defective Surface D 100...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...