Skip Nav Destination
Close Modal
Search Results for
molten metal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
molten metal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047756
EISBN: 978-1-62708-235-8
... extremities of a granular gold-tinted surface region adjacent to the tube-to-sleeve brazed joint and extending circumferentially were revealed by microscopic examination. Embrittlement of the tube caused by molten braze metal penetration along grain boundaries was evidenced by micrographs of a granular...
Abstract
Waspaloy (AMS 5586) fabricated inner ring of a spray-manifold assembly failed transversely through the manifold tubing at the edge of the tube and support sleeve brazed joint. The assembly was brazed with AWS BAu-4 filler metal (AMS 4787). Fatigue beach marks propagating from extremities of a granular gold-tinted surface region adjacent to the tube-to-sleeve brazed joint and extending circumferentially were revealed by microscopic examination. Embrittlement of the tube caused by molten braze metal penetration along grain boundaries was evidenced by micrographs of a granular portion of the fracture. It was revealed by the initial fracture profile that fatigue cracks begun as an intergranular separation and subsequently became transgranular. It was concluded that failure of the tube was caused by excessive alloying between the braze metal and the Waspaloy. Reduced temperatures during torch debrazing or rebrazing were recommended to minimize molten braze metal penetration.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure...
Abstract
A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure of the mold surface was the result of localized overheating caused by splashing of molten metal on the bore surface near the spigot end. In addition, the mold-wash compound (a bentonite mixture) near the spigot end was too thin to provide the proper degree of insulation and to prevent molten metal from sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001483
EISBN: 978-1-62708-225-9
... of copper, 1083 deg C (1981 deg F), molten metal came into contact with the bolt, into which it penetrated along the grain boundaries, culminating in rupture. Bolts Copper Liquid metals Overheating Penetration Steel bolt Liquid metal induced embrittlement Intergranular fracture The head...
Abstract
A steel bolt had been used to join the copper connecting strips between the poles of a 10-pole, series-connected, rotating field rotor of a synchronous motor. The exciting current was 155 amps. Failure of the bolt resulted in severe damage to the stator windings by the loosened ends of the strips. The bolt had fractured near the head, a location which probably coincided with the junction of the strips. A portion of the fracture surface was covered with copper that had been deposited in the molten state, while some was also present along the shank of the bolt, having apparently run in between the bolt and the hole in the strip. The bolt end adjacent to the fracture had been subjected to intense local heating. The extent of the grain-growth indicating that the temperature had been in the region of 1200 deg C (2192 deg F). When the temperature reached the melting-point of copper, 1083 deg C (1981 deg F), molten metal came into contact with the bolt, into which it penetrated along the grain boundaries, culminating in rupture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048143
EISBN: 978-1-62708-235-8
... the last contact was broken was revealed to have resulted in an arc that caused local melting of the metal being plated. The molten metal was interpreted to have been quenched instantly by the plating solution and by the mass of the cold metal of the spring. The hard spot caused by arcing during plating...
Abstract
A cadmium-plated music-wire return spring that operated in a pneumatic cylinder designed for infinite life at a maximum stress level of 620 MPa failed after 240,000 cycles. An extremely hard and small kernel, which looked like a weld deposit, was observed at the center of the fractured surface. The kernel was assumed to have resulted from extreme localized overheating. These springs were reported to have been barrel electroplated after fabrication. The intermittent contact with the dangler (suspended cathode contact) as the barrel rotated allowed high local currents when the last contact was broken was revealed to have resulted in an arc that caused local melting of the metal being plated. The molten metal was interpreted to have been quenched instantly by the plating solution and by the mass of the cold metal of the spring. The hard spot caused by arcing during plating was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048154
EISBN: 978-1-62708-235-8
... the fracture. No droplets were revealed at the origin of the fracture, but it was assumed that a drop of molten metal landed at the origin. Adherence of the spatter drop was expected to have been affected by the opening and closing of the fatigue crack. Weld spatter bead was concluded to have caused...
Abstract
A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. Weld spatter was not prevented from landing on the wire surface by any shield. An elongated drop and two tiny droplets of metal were observed a short distance from the fracture. No droplets were revealed at the origin of the fracture, but it was assumed that a drop of molten metal landed at the origin. Adherence of the spatter drop was expected to have been affected by the opening and closing of the fatigue crack. Weld spatter bead was concluded to have caused the fatigue fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
... of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from...
Abstract
A portable propane container with a name-plate soldered onto it exploded in service. When the vessel was inspected afterwards, it was found to have developed a crack in the top end plate. A portion of the end plate cut out to include the midlength and one termination of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Tensile stress was present at the time of the failure sufficiently high to enable solder penetration to take place. The use of soft solder as a medium for attaching name-plates directly on to stressed steel parts is not recommended. It would be preferable to use a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001705
EISBN: 978-1-62708-234-1
...Abstract Abstract The working fluid of a hypersonic wind tunnel is freon 14 heated in molten-metal-bath heat exchangers. The coils of the heaters have failed several times from various causes. They have been replaced each time with a stainless steel deemed more appropriate, but they continue...
Abstract
The working fluid of a hypersonic wind tunnel is freon 14 heated in molten-metal-bath heat exchangers. The coils of the heaters have failed several times from various causes. They have been replaced each time with a stainless steel deemed more appropriate, but they continue to fail. In this case study, the history of failures is traced, the causes are analyzed, and recommendations are made for future design and maintenance. Coils fabricated from AISI 316 should provide satisfactory service life if reasonable precautionary measures are observed during maintenance and testing.
Image
Published: 01 January 2002
Fig. 30 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which
More
Image
Published: 30 August 2021
Fig. 10 Permanent mold of 4130 steel for centrifugal casting of gray and ductile iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which
More
Image
Published: 01 January 2002
Fig. 22 (a) Cold shut voids (A, B) and flow lines (C, D) both caused by failure of the streams of molten metal to merge, at the cast surface (E) of an alloy 384-F die casting. 0.5% hydroflouric acid. 53× (b) Gate area (A) of an alloy 413-F die casting that has a cold shut void (B) and a region
More
Image
Published: 30 August 2021
Fig. 36 (a) Cold shut voids (A, B) and flow lines (C, D), both caused by failure of the streams of molten metal to merge, at the cast surface (E) of an alloy 384-F die casting. 0.5% hydrofluoric acid. Original magnification: 53×. (b) Gate area (A) of an alloy 413-F die casting that has a cold
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001479
EISBN: 978-1-62708-229-7
... deposits are often found to be present in internal scales and deposits, the metal resulting from the corrosion and/or erosion of pre-boiler equipment condenser tubes and tube plates, feed pump impellers and casings. Molten copper — along with other metals in the liquid state — is able to penetrate solid...
Abstract
Several ruptures took place in the front wall tubes of a water tube boiler. Some rupture samples showed ductile failure while others showed brittle failure. Specimens taken from the rupture where a thick edge had been produced, i.e., with little evidence of prior plastic deformation, showed a coarse microstructure indicative of gross overheating. The examination indicated that failure in the main resulted from gross overheating arising from water starvation as could have been due to a number of causes. The ruptures in some tubes were of the type commonly found in overheated tubes, the material being drawn out to a feather edge at the time of rupture. Other ruptures in the same and other tubes were of a more brittle type, this being associated with penetration of material by molten copper derived from scale.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001199
EISBN: 978-1-62708-235-8
... that the defect is most likely to occur when the design of the gate is such that the molten metal forms a skin across the die surface and then backfills during the remainder of the injection cycle. This is in partial agreement with Bosley 5 who considered that metal waves are connected with preferential die...
Abstract
Lakes in zinc die castings are areas encompassed by irregular lines or waves on flat or slightly contoured surfaces which are intended to look uniform. The laked areas have to be removed by polishing before the castings can be plated. This adds considerably to the overall cost of production. Castings examined were of an automobile name-plate holder with two flat sides of approximately 113 sq cm. All castings produced during a trial showed laking defects, the number and position varying from casting to casting. It was found that formation of metal waves and lakes depended primarily on the design of the gate and runner system and operating conditions. High flow efficiencies, with adequate feeding to all sections of the die, and short cavity fill times are desirable.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... to a high temperature by the contacting molten metal. This wedge of hot sand then acts as a thermal insulator, retarding solidification of the metal around it. As a result, a region is isolated from the risers by solid metal, and a shrinkage cavity forms just under the skin of the Y-junction. This cavity...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... to determine the type of melting employed. Defective castings resulting from the choice of melting are generally not an issue. Processing the liquid metal after melting can introduce conditions that may affect quality and introduce defects and/or imperfections. Molten Metal Handling Slag removal...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046911
EISBN: 978-1-62708-227-3
... metal arc weld was 0.54%, whereas that of the submerged arc weld was 0.86%. After being weighed, the specimens were submerged in molten zinc for 850 h. Analysis (visual inspection, chemical analysis, 100x 2% nital-etched micrographs) supported the conclusions that the vat failed due to molten-zinc...
Abstract
A steel galvanizing vat measuring 3 x 1.2 x 1.2 m (10 x 4 x 4 ft) and made of 19 mm thick carbon steel plate (ASTM A285, grade B)) at a shipbuilding and ship-repair facility failed after only three months of service. To verify suspected failure cause, two T joints were made in 12.5 mm thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded metal arc weld was 0.54%, whereas that of the submerged arc weld was 0.86%. After being weighed, the specimens were submerged in molten zinc for 850 h. Analysis (visual inspection, chemical analysis, 100x 2% nital-etched micrographs) supported the conclusions that the vat failed due to molten-zinc corrosion along elongated ferrite bands, possibly because silicon was dissolved in the ferrite and thus made it more susceptible to attack by the molten zinc. Recommendations included rewelding the vat using the manual shielded metal arc process with at least four passes on each side.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
... at the component manufacturing facility. A tour of the entire production process revealed that hardened slag products along the outside of the crucible were inadvertently being poured into the casting die along with the molten metal. It was concluded that this may have attributed to the inclusions noted in the two...
Abstract
Cluster bomb tailcone assemblies each containing two aluminum die-cast components were rejected because of the poor surface condition of the die castings. Numerous heat checks were found on the surfaces of the tailcones and radiographic inspection revealed inclusions, gas holes, and shrinkage defects in the castings. Most of the components failed to meet required mechanical properties because of these casting defects.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
..., namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... refractories and technical ceramics. They apply as well to the S + L reactions as to the solid S + G reactions. Liquids can be either slags or fluxes, molten salts, or molten metals, each presenting their own peculiarities. Slags are characterized by their basicity/acidity ratio (CaO/SiO 2 ratio either...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.