Skip Nav Destination
Close Modal
Search Results for
molds design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 99 Search Results for
molds design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... Abstract This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... techniques—all at an acceptable cost. For the material selection process to be successful, it should be intimately involved during part design and in selecting the manufacturing process, processing conditions, and post assembly procedures, as well as during mold design. Of course, it is important...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006912
EISBN: 978-1-62708-395-9
... computer-aided design files Although dynamic loads are difficult to predict before the parts are molded, thorough testing of the final production part is essential to minimize failures in the marketplace. One also must not underestimate the importance of what is being tested and the parameters...
Abstract
Plastic product failures are directly attributed to one of the following four reasons: omission of a critical performance requirement, improper materials specification, design error, and processing/manufacturing error. Therefore, product failures can be minimized or eliminated if all of these parameters are comprehensively examined during the design process. This article focuses on all of these factors, except processing-related failures, which are outside the design and engineering domain. It is dedicated to the identification and avoidance of common problems associated with the selection and designing of plastic parts. The article provides information on the material-related design criteria that depend on the applications, environmental conditions of use, and performance requirements. It discusses physical properties of plastics based on their relevance to real-world environmental conditions. The most-common design problems related to design considerations are also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006927
EISBN: 978-1-62708-395-9
... with permission by Elsevier. Copyright Elsevier 2017 Depending on the application to be developed, the design engineer should visualize the part or assembly from one or more perspectives. For example, if an extremely high-volume part will require multi-cavity injection molds, the design engineer should...
Abstract
This article provides background information needed by design engineers to create part designs optimized for plastics and plastic manufacturing processes. It describes the four essential elements of plastic part development, namely, material, process, tooling, and design, and provides general design rules for the plastic forming processes covered. It also discusses the steps involved in design validation and verification.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
... elements that allow the part to be formed or molded by the tooling and the process used. Given this background knowledge and the desire to find a solution for a “need” for some “user,” the design engineer creates a solution, develops the solution into a manufacturable design, and finally implements...
Abstract
This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts. The basis for the development sequence is twofold: first, to create the best solution for the application, and second, to minimize potential project risks through careful and thoughtful work habits.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
... Abstract In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing...
Abstract
In the EMD-2 Joint Directed Attack Munition (JDAM), the A357 aluminum alloy housing had been redesigned and cast via permanent mold casting, but did not meet the design strength requirements of the previous design. Mechanical tests on thick and thin sections of the forward housing assembly revealed tensile properties well below the allowable design values. Radiology and CT evaluations revealed no casting defects. Optical microscopy revealed porosity uniformly distributed throughout the casting on the order of 0.1 mm pore diam. Scanning electron microscopy revealed elongated pores, which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting process.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
..., where the flow becomes more constrained as the mold fills. Mold temperature, part thickness, molecular and reinforcement length, and gate design all affect the orientation and therefore the shrinkage and built-in stresses. The more restricted the flow, the greater the orientation in the flow direction...
Abstract
Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting processes on plastic parts and the material properties is presented. The article presents process effects on molecular orientation. It also illustrates the thinking that goes into the selection of processes for size, shape, and design factors. Finally, the article describes how various processes handle reinforcement.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... nodules. Etched with 2% nital. All 135× Fig. 13 Redesign of a casting to avoid waterfalling. (a) In this design, waterfalling results when casting is filled from the bottom. (b) Improved design provides a path for the metal to follow as it fills the mold. Fig. 14 Fracture surface...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090457
EISBN: 978-1-62708-222-8
... a metal slide on an older design, whereas newer components showed no signs of failure. The latch assembly components were injection molded from an unfilled commercial grade of a polyacetal copolymer. Investigation of failed parts (including visual inspection, a specially designed proof load test, 59x SEM...
Abstract
Components of a latch assembly used in a consumer safety restraint exhibited a relatively high failure rate. The failures were occurring after installation but prior to actual field use when failure could result in severe injury. Cracking occurred within retaining tabs used to secure a metal slide on an older design, whereas newer components showed no signs of failure. The latch assembly components were injection molded from an unfilled commercial grade of a polyacetal copolymer. Investigation of failed parts (including visual inspection, a specially designed proof load test, 59x SEM images, micro-FTIR in the ATR mode, and DSC/TGA/MFR analysis) showed no evidence of contamination or degradation from the molding process. The conclusion was that the parts failed via brittle fracture associated with stress overload. The stress overload was accompanied by severe apparent embrittlement resulting from a relatively high strain rate event and/or significant stress concentration. A relatively sharp corner formed by a retaining tab on the older design was shown to be a primary cause of the failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... defects that can occur specific to the metal group and progresses from melting to solidification, casting processing, and finally how removal of the mold material can affect performance. It should be mentioned that failures can result from the condition of the casting other than design and foundry...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090463
EISBN: 978-1-62708-234-1
... been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact...
Abstract
A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001378
EISBN: 978-1-62708-215-0
... Abstract Two 38 mm (1.5 in.) diam threaded stud bolts that were part of a steel mold die assembly from a plastics molding operation were examined to determine their serviceability. Chemical analysis showed the material to be a plain carbon steel that approximated 1045. Visual examination...
Abstract
Two 38 mm (1.5 in.) diam threaded stud bolts that were part of a steel mold die assembly from a plastics molding operation were examined to determine their serviceability. Chemical analysis showed the material to be a plain carbon steel that approximated 1045. Visual examination revealed evidence of severe hammer blows to the clevis and boss areas and a gap between the die and the underside of the boss. Magnetic particle inspection showed cracks at the thread roots that, when examined metallographically, were found to contain MnS stringers. The cracking of the threads was attributed to a poor stud bolt design, which allowed a high stress concentration to occur at the base of the threads upon application of a lateral load. It was recommended that bolts of a new design that incorporated a stress-relieving groove be used. Threading of the bolt to eliminate the gap between the lower face of the boss and the die and an improved method of inserting or removing the bolt to avoid hammering (use of a wrench on a square or hexagonal boss) were also recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining...
Abstract
A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining the mold, while it was in service, caused excessive thermal stresses which accelerated crack initiation and propagation. Investigators also proposed remedies to prevent additional failures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001284
EISBN: 978-1-62708-215-0
... revealed the presence of cold shuts at the same site in all specimens. It was recommended that all risers be thoroughly inspected and that the bow company work with their die casting shop to design a mold with acceptable filling characteristics. Casting defects Cracking (fracturing) Die casting...
Abstract
Compound bow handle risers that had failed in service and during assembly along with an unassembled riser were submitted for analysis. The risers were die cast from magnesium-base alloy AM60A. Inspection of the failed risers and metallurgical investigations conducted on the stock riser revealed the presence of cold shuts at the same site in all specimens. It was recommended that all risers be thoroughly inspected and that the bow company work with their die casting shop to design a mold with acceptable filling characteristics.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential...
Abstract
A failure analysis was conducted on a flow-sensing device that had cracked while in service. The polysulfone sensor body cracked radially, adjacent to a molded-in steel insert. This article describes the investigative methods used to conduct the failure analysis. The techniques utilized included scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermomechanical analysis, and melt flow rate determination. It was the conclusion of the investigation that the part failed via brittle fracture, with evidence also indicating low cycle fatigue associated with cyclic temperature changes from normal service. The design of the part and the material selection were significant contributing factors because of stresses induced during molding, physical aging of the amorphous polysulfone resin, and the substantial differential in coefficients of thermal expansion between the polysulfone and the mating steel insert.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
... Abstract This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures...
Abstract
This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures of rubber articles, with numerous accompanying figures, are representative of the four root failure categories.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006942
EISBN: 978-1-62708-395-9
... of curves shown in Fig. 1 . Early in the product life, the number of failures may be elevated. These failures are often attributed to manufacturing and/or quality control errors, such as a deficient molding procedures, improper assembly techniques, or material defects. As the design matures, these errors...
Abstract
Failure analysis is the process used to determine the cause of a failure. There is no definitive method for performing a failure analysis, and the method chosen is dependent upon the type of failure, the availability of background information, the tools available to perform the analysis, and the skills of the analyst. The information outlined in this article focuses on the general methodology while allowing for case-specific techniques to be utilized along the way. It covers the causes of failure, why a failure analysis is performed, the failure analysis process, the planning of failure analysis investigation, recommendations to prevent the need for a failure analysis, the implementation of product reviews, and forensic standards.
Image
Published: 01 January 2002
Fig. 13 Redesign of a casting to avoid waterfalling. (a) In this design, waterfalling results when casting is filled from the bottom. (b) Improved design provides a path for the metal to follow as it fills the mold.
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... to premature part failure. Material selection, part design, deficient tooling, environmental conditions, and user abuse will accelerate part failure even though a manufacturing deficiency may be the primary cause. Specifically, the rate of failure will increase exponentially for a part molded with wet material...
Abstract
This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing and orientation. It also presents examples of failures stemming from material degradation improper use of metal inserts, weak weld lines, insufficient curing of thermosets, and inadequate mixing and impregnation in the case of thermoset composites.
1