1-17 of 17 Search Results for

military nuclear power

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... workshop on reliability ( Ref 25 ). In addition to industry specific approaches, differences in the philosophies in the two geographical regions were also evident. As an example, consider the differences in the approaches adopted in aircraft and nuclear power applications. The military aviation...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006817
EISBN: 978-1-62708-329-4
... their enhanced version of reliability-centered maintenance “RCM2.” In the 1990s, RCM began to be implemented in U.S. industries outside the military and nuclear power. In response, processes emerged that were called RCM by their proponents but that often bore little or no resemblance to the original...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003504
EISBN: 978-1-62708-180-1
... and task intervals, and incorporated quantitative risk criteria directly into the setting of failure-finding task intervals. They call their enhanced version of reliability-centered maintenance “RCM2.” In the 1990s, RCM began to be implemented in U.S. industries outside the military and nuclear power...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... in the design of any pressure vessel is to select the proper design code based on its intended use. For example, a pressure vessel may be a power or heating boiler, a nuclear reactor chamber, a chemical process chamber, a hydrostatic test chamber used to test underwater equipment, or an aircraft fuselage...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... in order to understand how it may fail and to perform meaningful life assessment. For example, the first step in the design of any pressure vessel is to select the proper design code based on its intended use. For example, a pressure vessel may be a power or heating boiler, a nuclear reactor chamber...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors , Vol 1 , 7–10 Aug 1995 ( Breckenridge, CO ), National Association of Corrosion Engineers , 1995 , p 209 – 217 • Zhong P. and Yan H. , A Case Study of Bi-Sn-Induced Embrittlement , Eng...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003505
EISBN: 978-1-62708-180-1
... set of circumstances that present an injury potential (e.g., a railroad crossing at grade, a toxic chemical, a sharp knife, the jaws of a power press). Risk is the probability of injury and is affected by proximity, exposure, noise, light, experience, attention arresters, intelligence of an involved...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
...-generation plants (coal, oil, natural gas, and nuclear), pulp and paper mills, waste-incineration sites, numerous industrial chemical processes, diesel engines (power, land vehicle, and maritime), and gas turbine (land-based, marine shipboard, and aircraft). Predicting corrosion of metals and alloys...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
.... Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors , Vol 1 , Aug 7–10 , 1995 ( Breckenridge, CO ), National Association of Corrosion Engineers , 1995 , p 209 – 217 • Zhong P. and Yan H. , A Case Study of Bi-Sn-Induced Embrittlement , Eng. Fail. Anal...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... components, equipment, and structures has long been a serious safety and reliability concern for countless manufacturing, construction, and transportation industries, including automotive, aerospace, marine, power generation, chemical processing, and oil and gas. Furthermore, fatigue failures have been...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... intergranular pitting of 304L stainless steel condenser tubes in a geothermal electrical power plant operating at >100 °C (> 210 °F) has been reported ( Ref 16 ). In another example, microbiological activity and chloride concentrated under scale deposits were blamed for the wormhole pitting of carbon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... industries: Carbon, low-alloy, stainless steel, and nickel alloy process piping and vessels Manufacturing: Steel components subjected to caustic environments in pulp and paper equipment, sensitized stainless steel piping in food processing or dairy industries Power generation: Alloy steel used...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... of the failure. Etched in 8:1 phosphoric acid. 53× Fig. 33 Effect of nickel on SCC in 20.4% MgCl 2 deaerated with nitrogen. Source: Ref 26 Fig. 31 Power plant gate-valve stem of 17-4 PH stainless that failed by SCC in high-purity water. (a) A fracture surface of the valve stem showing...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9