1-20 of 1581 Search Results for

microstructure

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001592
EISBN: 978-1-62708-228-0
... developed to control and avoid those failures. This study presents various failure cases of sucker rods in different applications. The heat treatment of the steel material and the resulting microstructure are an important factor in the behavior of the sucker rod. A spheroidized microstructure presents...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
... Abstract Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047140
EISBN: 978-1-62708-234-1
... that superficial working of the metal, probably insufficient hot working, produced a microstructure in which the carbide particles were not broken up and evenly distributed. As a result, the grains were totally surrounded with brittle carbide particles. This facilitated the formation of a crack at a fillet...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... by the polycrystalline arrangement [ 1 ]. Two mechanisms are considered to take place in the material: grain boundary migration and grain boundary shearing/sliding. Theoretic and microstructural models agree that the most important feature of this behavior is the grain boundary sliding (GBS). Nevertheless, dislocations...
Image
Published: 01 June 2019
Fig. 6 Microstructure of the rotor housing. (a) General microstructure. 100x. (b) Ferritic matrix with spheroidized pearlite. 500x. Both etched with nital More
Image
Published: 01 June 2019
Fig. 7 Microstructure of AISI 4130 steel. This microstructure is representative of the intentionally tested BFA shown in Figure 5 . More
Image
Published: 01 June 2019
Fig. 4 a). Microstructure of core 100 × b). Microstructure of core 500× More
Image
Published: 01 December 2019
Fig. 5 Microstructure of sample 3a far from the fracture surface. Microstructure is similar to Fig. 4 , indicating that reaustenitization had not occurred. More
Image
Published: 01 December 1993
Fig. 5 Microstructure of the feedwater piping. The microstructure consists of pearlite and ferrite. Nital etch. (a) 61×. (b) 488×. More
Image
Published: 01 December 1993
Fig. 5 Microstructure of U-bend sample T4. The microstructure consists of pearlite in a ferrite matrix. Nital etch. 608×. More
Image
Published: 01 December 1993
Fig. 3 Microstructure of the swaged section of the tube. The microstructure consists of austenite grains with carbides along the grain boundaries and slip lines within the grains. Oxalic acid electrolytic etch. Top, 62×, Bottom, 496× More
Image
Published: 01 January 2002
Fig. 10 General trends indicating effect of microstructure of a composite and the properties of fillers on adhesive wear of composites. p , applied pressure; H M , hardness of matrix. AP, P, and N refer to orientations of fibers with respect to sliding direction: AP, antiparallel; P More
Image
Published: 01 January 2002
Fig. 16(b) Interior microstructure of the cracked ring forging shown in Fig. 16(a) . Unstable retained austenite (white) and coarse plate martensite (dark) can be seen. The amount of residual carbide was negligible compared to what should have been present. Etched with 3% nital. 700× More
Image
Published: 01 January 2002
Fig. 24 Microstructure of the heavily carburized cracked punch shown in Fig. 22 and 23 . (a) Massive carbide enrichment at the surface. (b) Excess carbides at the base of the crack, about 0.7 mm (0.0275 in.) deep. (c) Structure at about 1.08-mm (0.0425-in.) depth. (d) Coarse More
Image
Published: 01 January 2002
Fig. 33 Examples of the microstructure of AISI M2 high-speed steel. (a) Desired quenched-and-tempered condition: 1200 °C (2200 °F) for 5 min in salt, oil quench, double temper at 595 °C (1100 °F). Etched with 3% nital. 500×. (b) Grain growth caused by reaustenitizing without annealing: 1220 °C More
Image
Published: 01 January 2002
Fig. 23 Graphitized microstructure of SA-210-A-1 plain carbon steel. The structure is ferrite and graphite with only a trace of spheroidized carbon remaining. Etched with nital. 500× More
Image
Published: 01 January 2002
Fig. 12(d) Microstructure of longitudinal weld metal near fracture-initiation point. Note the white phase along grain boundaries. More
Image
Published: 01 January 2002
Fig. 31 Microstructure, linked voids, and split grain boundaries in the failed outlet header shown in Fig. 30 . 400× More
Image
Published: 01 January 2002
Fig. 12 Three views of the microstructure of axle 1611. The specimens were taken from the area near the center at different distances from the fracture face. (a) Near the fracture surface. (b) 6.4 mm (0.25 in.) from the fracture face. (c) 38 mm (1.5 in.) from the fracture face More
Image
Published: 01 January 2002
Fig. 13 Four views of the microstructure of axle 2028. The specimens were taken from the area near the center at different distances from the fracture face. (a) At the fracture surface. (b) At the boundary between the edge structure and the heat-affected structure. (c) At the heat-affected More